33 research outputs found

    Entrainment and motor emulation approaches to joint action: alternatives or complementary approaches?

    Get PDF
    Joint actions, such as music and dance, rely crucially on the ability of two, or more, agents to align their actions with great temporal precision. Within the literature that seeks to explain how this action alignment is possible, two broad approaches have appeared. The first, what we term the entrainment approach, has sought to explain these alignment phenomena in terms of the behavioral dynamics of the system of two agents. The second, what we term the emulator approach, has sought to explain these alignment phenomena in terms of mechanisms, such as forward and inverse models, that are implemented in the brain. They have often been pitched as alternative explanations of the same phenomena; however, we argue that this view is mistaken, because, as we show, these two approaches are engaged in distinct, and not mutually exclusive, explanatory tasks. While the entrainment approach seeks to uncover the general laws that govern behavior the emulator approach seeks to uncover mechanisms. We argue that is possible to do both and that the entrainment approach must pay greater attention to the mechanisms that support the behavioral dynamics of interest. In short, the entrainment approach must be transformed into a neuroentrainment approach by adopting a mechanistic view of explanation and by seeking mechanisms that are implemented in the brain

    Duration of Purkinje cell complex spikes increases with their firing frequency

    Get PDF
    Climbing fiber (CF) triggered complex spikes (CS) are massive depolarization bursts in the cerebellar Purkinje cell (PC), showing several high frequency spikelet components (\ub1600 Hz). Since its early observations, the CS is known to vary in shape. In this study we describe CS waveforms, extracellularly recorded in awake primates (Macaca mulatta) performing saccades. Every PC analyzed showed a range of CS shapes with profoundly different duration and number of spikelets. The initial part of the CS was rather constant but the later part differed greatly, with a pronounced jitter of the last spikelets causing a large variation in total CS duration. Waveforms did not effect the following pause duration in the simple spike (SS) train, nor were SS firing rates predictive of the waveform shapes or vice versa. The waveforms did not differ between experimental conditions nor was there a preferred sequential order of CS shapes throughout the recordings. Instead, part of their variability, the timing jitter of the CS\u2019s last spikelets, strongly correlated with interval length to the preceding CS: shorter CS intervals resulted in later appearance of the last spikelets in the CS burst, and vice versa. A similar phenomenon was observed in rat PCs recorded in vitro upon repeated extracellular stimulation of CFs at different frequencies in slice experiments. All together these results strongly suggest that the variability in the timing of the last spikelet is due to CS frequency dependent changes in PC excitability

    Distributed cerebellar plasticity implements generalized multiple-scale memory components in real-robot sensorimotor tasks

    Get PDF
    The cerebellum plays a crucial role in motor learning and it acts as a predictive controller. Modeling it and embedding it into sensorimotor tasks allows us to create functional links between plasticity mechanisms, neural circuits and behavioral learning. Moreover, if applied to real-time control of a neurorobot, the cerebellar model has to deal with a real noisy and changing environment, thus showing its robustness and effectiveness in learning. A biologically inspired cerebellar model with distributed plasticity, both at cortical and nuclear sites, has been used. Two cerebellum-mediated paradigms have been designed: an associative Pavlovian task and a vestibulo-ocular reflex, with multiple sessions of acquisition and extinction and with different stimuli and perturbation patterns. The cerebellar controller succeeded to generate conditioned responses and finely tuned eye movement compensation, thus reproducing human-like behaviors. Through a productive plasticity transfer from cortical to nuclear sites, the distributed cerebellar controller showed in both tasks the capability to optimize learning on multiple time-scales, to store motor memory and to effectively adapt to dynamic ranges of stimuli.This work was supported by grants of European Union: REALNET (FP7-ICT270434) and Human Brain Project (HBP-604102)

    Thalamic neuromodulation and its implications for executive networks

    Get PDF
    The thalamus is a key structure that controls the routing of information in the brain. Understanding modulation at the thalamic level is critical to understanding the flow of information to brain regions involved in cognitive functions, such as the neocortex, the hippocampus, and the basal ganglia. Modulators contribute the majority of synapses that thalamic cells receive, and the highest fraction of modulator synapses is found in thalamic nuclei interconnected with higher order cortical regions. In addition, disruption of modulators often translates into disabling disorders of executive behavior. However, modulation in thalamic nuclei such as the midline and intralaminar groups, which are interconnected with forebrain executive regions, has received little attention compared to sensory nuclei. Thalamic modulators are heterogeneous in regards to their origin, the neurotransmitter they use, and the effect on thalamic cells. Modulators also share some features, such as having small terminal boutons and activating metabotropic receptors on the cells they contact. I will review anatomical and physiological data on thalamic modulators with these goals: first, determine to what extent the evidence supports similar modulator functions across thalamic nuclei; and second, discuss the current evidence on modulation in the midline and intralaminar nuclei in relation to their role in executive function

    Evolutionary aspects of self- and world consciousness in vertebrates

    Get PDF
    Although most aspects of world and self-consciousness are inherently subjective, neuroscience studies in humans and non-human animals provide correlational and causative indices of specific links between brain activity and representation of the self and the world. In this article we review neuroanatomic, neurophysiological and neuropsychological data supporting the hypothesis that different levels of self and world representation in vertebrates rely upon (i) a \u201cbasal\u201d subcortical system that includes brainstem, hypothalamus and central thalamic nuclei and that may underpin the primary (or anoetic) consciousness likely present in all vertebrates; and (ii) a forebrain system that include the medial and lateral structures of the cerebral hemispheres and may sustain the most sophisticated forms of consciousness [e.g., noetic (knowledge based) and autonoetic, reflective knowledge]. We posit a mutual, bidirectional functional influence between these two major brain circuits. We conclude that basic aspects of consciousness like primary self and core self (based on anoetic and noetic consciousness) are present in many species of vertebrates and that, even self-consciousness (autonoetic consciousness) does not seem to be a prerogative of humans and of some non-human primates but may, to a certain extent, be present in some other mammals and bird
    corecore