63 research outputs found

    The unprecedented 2017-2018 stratospheric smoke event : Decay phase and aerosol properties observed with the EARLINET

    Get PDF
    © Author(s) 2019. This open access work is distributed under the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/).Six months of stratospheric aerosol observations with the European Aerosol Research Lidar Network (EARLINET) from August 2017 to January 2018 are presented. The decay phase of an unprecedented, record-breaking stratospheric perturbation caused by wildfire smoke is reported and discussed in terms of geometrical, optical, and microphysical aerosol properties. Enormous amounts of smoke were injected into the upper troposphere and lower stratosphere over fire areas in western Canada on 12 August 2017 during strong thunderstorm-pyrocumulonimbus activity. The stratospheric fire plumes spread over the entire Northern Hemisphere in the following weeks and months. Twenty-eight European lidar stations from northern Norway to southern Portugal and the eastern Mediterranean monitored the strong stratospheric perturbation on a continental scale. The main smoke layer (over central, western, southern, and eastern Europe) was found at heights between 15 and 20 km since September 2017 (about 2 weeks after entering the stratosphere). Thin layers of smoke were detected at heights of up to 22-23 km. The stratospheric aerosol optical thickness at 532 nm decreased from values > 0.25 on 21-23 August 2017 to 0.005-0.03 until 5-10 September and was mainly 0.003-0.004 from October to December 2017 and thus was still significantly above the stratospheric background (0.001-0.002). Stratospheric particle extinction coefficients (532 nm) were as high as 50-200 Mm-1 until the beginning of September and on the order of 1 Mm-1 (0.5- 5 Mm-1) from October 2017 until the end of January 2018. The corresponding layer mean particle mass concentration was on the order of 0.05-0.5 μg m-3 over these months. Soot particles (light-absorbing carbonaceous particles) are efficient ice-nucleating particles (INPs) at upper tropospheric (cirrus) temperatures and available to influence cirrus formation when entering the tropopause from above. We estimated INP concentrations of 50-500 L-1 until the first days in September and afterwards 5-50 L-1 until the end of the year 2017 in the lower stratosphere for typical cirrus formation temperatures of -55 ?C and an ice supersaturation level of 1.15. The measured profiles of the particle linear depolarization ratio indicated a predominance of nonspherical smoke particles. The 532 nm depolarization ratio decreased slowly with time in the main smoke layer from values of 0.15-0.25 (August-September) to values of 0.05-0.10 (October-November) and < 0.05 (December-January). The decrease of the depolarization ratio is consistent with aging of the smoke particles, growing of a coating around the solid black carbon core (aggregates), and thus change of the shape towards a spherical form. We found ascending aerosol layer features over the most southern European stations, especially over the eastern Mediterranean at 32-35? N, that ascended from heights of about 18-19 to 22-23 km from the beginning of October to the beginning of December 2017 (about 2 km per month). We discuss several transport and lifting mechanisms that may have had an impact on the found aerosol layering structures.Peer reviewe

    Tropospheric and stratospheric smoke over Europe as observed within EARLINET/ACTRIS in summer 2017

    Get PDF
    For several weeks in summer 2017, strong smoke layers were observed over Europe at numerous EARLINET stations. EARLINET is the European research lidar network and part of ACTRIS and comprises more than 30 ground-based lidars. The smoke layers were observed in the troposphere as well as in the stratosphere up to 25 km from Northern Scandinavia over whole western and central Europe to the Mediterranean regions. Backward trajectory analysis among other tools revealed that these smoke layers originated from strong wild fires in western Canada in combination with pyrocumulus convection. An extraordinary fire event in the mid of August caused intense smoke layers that were observed across Europe for several weeks starting on 18 August 2017. Maximum aerosol optical depths up to 1.0 at 532 nm were observed at Leipzig, Germany, on 22 August 2017 during the peak of this event. The stratospheric smoke layers reached extinction coefficient values of more than 600 Mm−1 at 532 nm, a factor of 10 higher than observed for volcanic ash after the Pinatubo eruption in the 1990s. First analyses of the intensive optical properties revealed low particle depolarization values at 532 nm for the tropospheric smoke (spherical particles) and rather high values (up to 20%) in the stratosphere. However, a strong wavelength dependence of the depolarization ratio was measured for the stratospheric smoke. This indicates irregularly shaped stratospheric smoke particles in the size range of the accumulation mode. This unique depolarization feature makes it possible to distinguish clearly smoke aerosol from cirrus clouds or other aerosol types by polarization lidar measurements. Particle extinction-to-backscatter ratios were rather low in the order of 40 to 50 sr at 355 nm, while values between 70-90 sr were measured at higher wavelengths. In the western and central Mediterranean, stratospheric smoke layers were most prominent in the end of August at heights between 16 and 20 km. In contrast, stratospheric smoke started to occur in the eastern Mediterranean (Cyprus and Israel) in the beginning of September between 18 and 23 km. Stratospheric smoke was still visible in the beginning of October at certain locations (e.g. Evora, Portugal), while tropospheric smoke was mainly observed until the end of August within Europe. An overview of the smoke layers measured at several EARLINET sites will be given. The temporal development of these layers as well as their geometrical and optical properties will be presented

    First results on the angular resolution of the ARGO-YBJ detector

    Get PDF
    We present the first results on the angular resolution of the ARGO-YBJ detector in data taking at the Yangbajing Laboratory (Tibet, P.R. China, 4300 m a.s.l.

    Simulation study of air shower particles near the core region

    Get PDF
    The ARGO-YBJ experiment has two kinds of signals in the shower working mode which allows coverage of the energy region from TeV to PeV region. One is the digital strip pattern, another is so-called ‘big pad’ mode, which is the analog signal counting the pulse height on half of an RPC, proportional to the number of hitting particles. In this paper by using the Monte Carlo simulation method the ARGO-YBJ sensitivity to the cosmic ray composition is discussed, by using the ‘big pad’ signal for measuring the number of particles detected close to the shower core

    Search for gamma ray bursts with the ARGO-YBJ detector in scaler mode

    Get PDF
    The ARGO-YBJ experiment has been designed to decrease the energy threshold of typical Extensive Air Shower arrays by exploiting the high altitude and the full coverage, consisting of a 6700m2 carpet of Resistive Plate Chambers located at Yangbajing (Tibet, PR China, 4300m a.s.l.). The lower energy limit of the detector (1 GeV) is reached with the ‘‘Scaler Mode’’, recording the counting rate at fixed time intervals. Here we present results concerning the search for emission from Gamma Ray Bursts (GRBs) in coincidence with satellite detections

    EARLINET evaluation of the CATS Level 2 aerosol backscatter coefficient product

    Get PDF
    We present the evaluation activity of the European Aerosol Research Lidar Network (EARLINET) for the quantitative assessment of the Level 2 aerosol backscatter coefficient product derived by the Cloud-Aerosol Transport System (CATS) aboard the International Space Station (ISS; Rodier et al., 2015). The study employs correlative CATS EARLINET backscatter measurements within a 50 km distance between the ground station and the ISS overpass and as close in time as possible, typically with the starting time or stopping time of the EARLINET performed asurement time window within 90 min of the ISS overpass, for the period from February 2015 to September 2016

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements
    corecore