37 research outputs found

    Performance of four HRP-2/pLDH combination rapid diagnostic tests and field microscopy as screening tests for malaria in pregnancy in Indonesia: a cross-sectional study.

    Get PDF
    BACKGROUND Malaria in pregnancy poses a major public health problem in Indonesia with an estimated six million pregnancies at risk of Plasmodium falciparum or Plasmodium vivax malaria annually. In 2010, Indonesia introduced a screen and treat policy for the control of malaria in pregnancy at first antenatal visit using microscopy or rapid diagnostic tests (RDTs). A diagnostic study was conducted in Sumba, Indonesia to compare the performance of four different RDTs in predominately asymptomatic pregnant women under field condition. METHODS Women were screened for malaria at antenatal visits using field microscopy and four HRP-2/pLDH combination RDTs (Carestart™, First-Response(®), Parascreen(®) and SD-Bioline(®)). The test results were compared with expert microscopy and nested PCR. End user experience of the RDTs in the field was assessed by questionnaire. RESULTS Overall 950 were recruited and 98.7 % were asymptomatic. The prevalence of malaria was 3.0-3.4 % by RDTs, and 3.6, 5.0 and 6.6 % by field microscopy, expert microscopy and PCR, respectively. The geometric-mean parasite density was low (P. falciparum = 418, P. vivax = 147 parasites/µL). Compared with PCR, the overall sensitivity of the RDTs and field microscopy to detect any species was 24.6-31.1 %; specificities were >98.4 %. Relative to PCR, First-Response(®) had the best diagnostic accuracy (any species): sensitivity = 31.1 %, specificity = 98.9 % and diagnostic odds ratio = 39.0 (DOR). The DOR values for Carestart™, Parascreen(®), SD-Bioline(®), and field microscopy were 23.4, 23.7, 23.5 and 29.2, respectively. The sensitivity of Pan-pLDH bands to detect PCR confirmed P. vivax mono-infection were 8.6-13.0 %. The sensitivity of the HRP-2 band alone to detect PCR confirmed P. falciparum was 10.3-17.9 %. Pan-pLDH detected P. falciparum cases undetected by the HRP-2 band resulting in a better test performance when both bands were combined. First Response(®) was preferred by end-users for the overall practicality. CONCLUSION The diagnostic accuracy to detect malaria among mostly asymptomatic pregnant women and perceived ease of use was slightly better with First-Response(®), but overall, differences between the four RDTs were small and performance comparable to field microscopy. Combination RDTs are a suitable alternative to field microscopy to screen for malaria in pregnancy in rural Indonesia. The clinical relevance of low density malaria infections detected by PCR, but undetected by RDTs or microscopy needs to be determined

    Search for high-mass diphoton resonances in pp collisions at √s = 8 TeV with the ATLAS detector

    Get PDF
    This article describes a search for high-mass resonances decaying to a pair of photons using a sample of 20.3  fb−¹ of pp collisions at √s = 8 TeV recorded with the ATLAS detector at the Large Hadron Collider. The data are found to be in agreement with the Standard Model prediction, and limits are reported in the framework of the Randall-Sundrum model. This theory leads to the prediction of graviton states, the lightest of which could be observed at the Large Hadron Collider. A lower limit of 2.66 (1.41) TeV at 95% confidence level is set on the mass of the lightest graviton for couplings of k/M̄Pl=0.1(0.01)

    Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects

    Get PDF
    Copy number variants (CNVs) have been strongly implicated in the genetic etiology of schizophrenia (SCZ). However, genome-wide investigation of the contribution of CNV to risk has been hampered by limited sample sizes. We sought to address this obstacle by applying a centralized analysis pipeline to a SCZ cohort of 21,094 cases and 20,227 controls. A global enrichment of CNV burden was observed in cases (OR=1.11, P=5.7×10−15), which persisted after excluding loci implicated in previous studies (OR=1.07, P=1.7 ×10−6). CNV burden was enriched for genes associated with synaptic function (OR = 1.68, P = 2.8 ×10−11) and neurobehavioral phenotypes in mouse (OR = 1.18, P= 7.3 ×10−5). Genome-wide significant evidence was obtained for eight loci, including 1q21.1, 2p16.3 (NRXN1), 3q29, 7q11.2, 15q13.3, distal 16p11.2, proximal 16p11.2 and 22q11.2. Suggestive support was found for eight additional candidate susceptibility and protective loci, which consisted predominantly of CNVs mediated by non-allelic homologous recombination

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Search for heavy lepton resonances decaying to a Z boson and a lepton in pp collisions at √s=8 TeV with the ATLAS detector

    Get PDF
    A search for heavy leptons decaying to a Z boson and an electron or a muon is presented. The search is based on pp collision data taken at s√=8 TeV by the ATLAS experiment at the CERN Large Hadron Collider, corresponding to an integrated luminosity of 20.3 fb−1. Three high-transverse-momentum electrons or muons are selected, with two of them required to be consistent with originating from a Z boson decay. No significant excess above Standard Model background predictions is observed, and 95% confidence level limits on the production cross section of high-mass trilepton resonances are derived. The results are interpreted in the context of vector-like lepton and type-III seesaw models. For the vector-like lepton model, most heavy lepton mass values in the range 114–176 GeV are excluded. For the type-III seesaw model, most mass values in the range 100–468 GeV are excluded

    Search for invisible particles produced in association with single-top-quarks in proton–proton collisions at √s = 8 TeV with the ATLAS detector

    Get PDF
    A search for the production of single-top-quarks in association with missing energy is performed in proton– proton collisions at a centre-of-mass energy of √s = 8 TeV with the ATLAS experiment at the large hadron collider using data collected in 2012, corresponding to an integrated luminosity of 20.3 fb−1. In this search, the W boson from the top quark is required to decay into an electron or a muon and a neutrino. No deviation from the standard model prediction is observed, and upper limits are set on the production cross-section for resonant and non-resonant production of an invisible exotic state in association with a right-handed top quark. In the case of resonant production, for a spin-0 resonance with a mass of 500 GeV, an effective coupling strength above 0.15 is excluded at 95 % confidence level for the top quark and an invisible spin-1/2 state with mass between 0 and 100 GeV. In the case of non-resonant production, an effective coupling strength above 0.2 is excluded at 95 % confidence level for the top quark and an invisible spin-1 state with mass between 0 and 657 GeV

    Transverse momentum, rapidity, and centrality dependence of inclusive charged-particle production in √snn = 5.02 TeV p + Pb collisions measured by the ATLAS experiment

    Get PDF
    Measurements of the per-event charged-particle yield as a function of the charged-particle transverse momentum and rapidity are performed using p + Pb collision data collected by the ATLAS experiment at the LHC at a centre-of-mass energy of √snn = 5.02 TeV. Charged particles are reconstructed over pseudorapidity | η | < 2.3 and transverse momentum between 0.1 GeV and 22 GeV in a dataset corresponding to an integrated luminosity of 1 μb − 1. The results are presented in the form of charged-particle nuclear modification factors, where the p + Pb charged-particle multiplicities are compared between central and peripheral p + Pb collisions as well as to charged-particle cross sections measured in pp collisions. The p + Pb collision centrality is characterized by the total transverse energy measured in − 4.9 < η < − 3.1, which is in the direction of the outgoing lead beam. Three different estimations of the number of nucleons participating in the p + Pb collision are carried out using the Glauber model and two Glauber–Gribov colour-fluctuation extensions to the Glauber model. The values of the nuclear modification factors are found to vary significantly as a function of rapidity and transverse momentum. A broad peak is observed for all centralities and rapidities in the nuclear modification factors for charged-particle transverse momentum values around 3 GeV. The magnitude of the peak increases for more central collisions as well as rapidity ranges closer to the direction of the outgoing lead nucleus

    Schizophrenia-associated somatic copy-number variants from 12,834 cases reveal recurrent NRXN1 and ABCB11 disruptions

    Get PDF
    While germline copy-number variants (CNVs) contribute to schizophrenia (SCZ) risk, the contribution of somatic CNVs (sCNVs)—present in some but not all cells—remains unknown. We identified sCNVs using blood-derived genotype arrays from 12,834 SCZ cases and 11,648 controls, filtering sCNVs at loci recurrently mutated in clonal blood disorders. Likely early-developmental sCNVs were more common in cases (0.91%) than controls (0.51%, p = 2.68e−4), with recurrent somatic deletions of exons 1–5 of the NRXN1 gene in five SCZ cases. Hi-C maps revealed ectopic, allele-specific loops forming between a potential cryptic promoter and non-coding cis-regulatory elements upon 5′ deletions in NRXN1. We also observed recurrent intragenic deletions of ABCB11, encoding a transporter implicated in anti-psychotic response, in five treatment-resistant SCZ cases and showed that ABCB11 is specifically enriched in neurons forming mesocortical and mesolimbic dopaminergic projections. Our results indicate potential roles of sCNVs in SCZ risk

    Genomic Dissection of Bipolar Disorder and Schizophrenia, Including 28 Subphenotypes

    Get PDF
    publisher: Elsevier articletitle: Genomic Dissection of Bipolar Disorder and Schizophrenia, Including 28 Subphenotypes journaltitle: Cell articlelink: https://doi.org/10.1016/j.cell.2018.05.046 content_type: article copyright: © 2018 Elsevier Inc
    corecore