1,824 research outputs found
Supersymmetric mass spectra and the seesaw type-I scale
We calculate supersymmetric mass spectra with cMSSM boundary conditions and a
type-I seesaw mechanism added to explain current neutrino data. Using
published, estimated errors on SUSY mass observables for a combined LHC+ILC
analysis, we perform a theoretical analysis to identify parameter
regions where pure cMSSM and cMSSM plus seesaw type-I might be distinguishable
with LHC+ILC data. The most important observables are determined to be the
(left) smuon and selectron masses and the splitting between them, respectively.
Splitting in the (left) smuon and selectrons is tiny in most of cMSSM parameter
space, but can be quite sizeable for large values of the seesaw scale,
. Thus, for very roughly GeV hints for type-I
seesaw might appear in SUSY mass measurements. Since our numerical results
depend sensitively on forecasted error bars, we discuss in some detail the
accuracies, which need to be achieved, before a realistic analysis searching
for signs of type-I seesaw in SUSY spectra can be carried out.Comment: 17 pages, 7 figure
Critical change in the Fermi surface of iron arsenic superconductors at the onset of superconductivity
The phase diagram of a correlated material is the result of a complex
interplay between several degrees of freedom, providing a map of the material's
behavior. One can understand (and ultimately control) the material's ground
state by associating features and regions of the phase diagram, with specific
physical events or underlying quantum mechanical properties. The phase diagram
of the newly discovered iron arsenic high temperature superconductors is
particularly rich and interesting. In the AE(Fe1-xTx)2As2 class (AE being Ca,
Sr, Ba, T being transition metals), the simultaneous structural/magnetic phase
transition that occurs at elevated temperature in the undoped material, splits
and is suppressed by carrier doping, the suppression being complete around
optimal doping. A dome of superconductivity exists with apparent equal ease in
the orthorhombic / antiferromagnetic (AFM) state as well as in the tetragonal
state with no long range magnetic order. The question then is what determines
the critical doping at which superconductivity emerges, if the AFM order is
fully suppressed only at higher doping values. Here we report evidence from
angle resolved photoemission spectroscopy (ARPES) that critical changes in the
Fermi surface (FS) occur at the doping level that marks the onset of
superconductivity. The presence of the AFM order leads to a reconstruction of
the electronic structure, most significantly the appearance of the small hole
pockets at the Fermi level. These hole pockets vanish, i. e. undergo a Lifshitz
transition, at the onset of superconductivity. Superconductivity and magnetism
are competing states in the iron arsenic superconductors. In the presence of
the hole pockets superconductivity is fully suppressed, while in their absence
the two states can coexist.Comment: Updated version accepted in Nature Physic
Location of chlorogenic acid biosynthesis pathway and polyphenol oxidase genes in a new interspecific anchored linkage map of eggplant
© Gramazio et al.; licensee BioMed Central. 2014. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated
Factor structure and validity of the shoulder pain and disability index in a population-based study of people with shoulder symptoms
Background: The Shoulder Pain and Disability Index (SPADI) is a self-administered questionnaire that aims to measure pain and disability associated with shoulder disease. The aim of the present study was to investigate the construct validity and factor structure of the SPADI in a population-based study of patients with self-reported chronic shoulder symptoms. Methods: The North West Adelaide Health Study is a representative longitudinal cohort study of people aged 18 years and over. The original sample was randomly selected and recruited by telephone interview. Overall, 3 206 participants returned to the clinic during the second stage (2004-2006) and were asked to report whether they had pain, aching or stiffness on most days in either of their shoulders. Data was also collected on body mass index and shoulder range of motion (ROM) and demographic factors. The SPADI (numeric rating scale) was administered to participants with shoulder symptoms. Principal components factor analysis, with varimax rotation of factor loadings, was used to assess subscale structure of SPADI. Correlations between the SPADI, shoulder ROM and SF-36 were performed. Results: Overall, 22.3% of participants indicated that they had pain, aching or stiffness in either of their shoulders. SPADI results were available for 588 of participants with current shoulder symptoms. The internal consistency of the SPADI subscales were high (Cronbach's alpha > 0.92). Two factors, explaining 61.4% of the total variance were extracted by factor analysis. These were interpreted as disability and pain respectively. There was a strong negative correlation between SPADI disability subscale scores and shoulder range of motion. SPADI disability, but not pain, subscale scores were correlated with age. Conclusions: The SPADI is a valid measure to assess pain and disability in people with shoulder pain in a population-based study. In this setting, the SPADI had a bidimensional structure with both pain and disability subscales.Catherine L Hill, Susan Lester, Anne W Taylor, Michael E Shanahan, Tiffany K Gil
Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in âs=13âTeV pp collisions with the ATLAS detector
A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of âs=13ââTeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139ââfbâ1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015â2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV
Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at sâ=8 TeV with ATLAS
Measurements of fiducial and differential cross sections are presented for Higgs boson production in proton-proton collisions at a centre-of-mass energy of sâ=8 TeV. The analysis is performed in the H â γγ decay channel using 20.3 fbâ1 of data recorded by the ATLAS experiment at the CERN Large Hadron Collider. The signal is extracted using a fit to the diphoton invariant mass spectrum assuming that the width of the resonance is much smaller than the experimental resolution. The signal yields are corrected for the effects of detector inefficiency and resolution. The pp â H â γγ fiducial cross section is measured to be 43.2 ±9.4(stat.) ââ2.9 +â3.2 (syst.) ±1.2(lumi)fb for a Higgs boson of mass 125.4GeV decaying to two isolated photons that have transverse momentum greater than 35% and 25% of the diphoton invariant mass and each with absolute pseudorapidity less than 2.37. Four additional fiducial cross sections and two cross-section limits are presented in phase space regions that test the theoretical modelling of different Higgs boson production mechanisms, or are sensitive to physics beyond the Standard Model. Differential cross sections are also presented, as a function of variables related to the diphoton kinematics and the jet activity produced in the Higgs boson events. The observed spectra are statistically limited but broadly in line with the theoretical expectations
Formation of Complex and Unstable Chromosomal Translocations in Yeast
Genome instability, associated with chromosome breakage syndromes and most human
cancers, is still poorly understood. In the yeast Saccharomyces
cerevisiae, numerous genes with roles in the preservation of genome
integrity have been identified. DNA-damage-checkpoint-deficient yeast cells that
lack Sgs1, a RecQ-like DNA helicase related to the human
Bloom's-syndrome-associated helicase BLM, show an increased rate of
genome instability, and we have previously shown that they accumulate recurring
chromosomal translocations between three similar genes, CAN1,
LYP1 and ALP1. Here, the chromosomal
location, copy number and sequence similarity of the translocation targets
ALP1 and LYP1 were altered to gain insight
into the formation of complex translocations. Among 844 clones with chromosomal
rearrangements, 93 with various types of simple and complex translocations
involving CAN1, LYP1 and ALP1
were identified. Breakpoint sequencing and mapping showed that the formation of
complex translocation types is strictly dependent on the location of the
initiating DNA break and revealed that complex translocations arise via a
combination of interchromosomal translocation and template-switching, as well as
from unstable dicentric intermediates. Template-switching occurred between
sequences on the same chromosome, but was inhibited if the genes were
transferred to different chromosomes. Unstable dicentric translocations
continuously gave rise to clones with multiple translocations in various
combinations, reminiscent of intratumor heterogeneity in human cancers. Base
substitutions and evidence of DNA slippage near rearrangement breakpoints
revealed that translocation formation can be accompanied by point mutations, and
their presence in different translocation types within the same clone provides
evidence that some of the different translocation types are derived from each
other rather than being formed de novo. These findings provide
insight into eukaryotic genome instability, especially the formation of
translocations and the sources of intraclonal heterogeneity, both of which are
often associated with human cancers
Revisiting the warm sub-Saturn TOI-1710b
The Transiting Exoplanet Survey Satellite (TESS) provides a continuous suite
of new planet candidates that need confirmation and precise mass determination
from ground-based observatories. This is the case for the G-type star TOI-1710,
which is known to host a transiting sub-Saturn planet
(28.34.7) in a long-period orbit
(P=24.28\,d). Here we combine archival SOPHIE and new and archival HARPS-N
radial velocity data with newly available TESS data to refine the planetary
parameters of the system and derive a new mass measurement for the transiting
planet, taking into account the impact of the stellar activity on the mass
measurement. We report for TOI-1710b a radius of
5.150.12, a mass of
18.44.5, and a mean bulk density of
0.730.18, which are consistent at
1.2, 1.5, and 0.7, respectively, with previous
measurements. Although there is not a significant difference in the final mass
measurement, we needed to add a Gaussian process component to successfully fit
the radial velocity dataset. This work illustrates that adding more
measurements does not necessarily imply a better mass determination in terms of
precision, even though they contribute to increasing our full understanding of
the system. Furthermore, TOI-1710b joins an intriguing class of planets with
radii in the range 4-8 that have no counterparts in the
Solar System. A large gaseous envelope and a bright host star make TOI-1710b a
very suitable candidate for follow-up atmospheric characterization.Comment: Accepted for publication in A&A. 21 pages, 14 figure
Measurement of the cross-section of high transverse momentum vector bosons reconstructed as single jets and studies of jet substructure in pp collisions at âs = 7 TeV with the ATLAS detector
This paper presents a measurement of the cross-section for high transverse momentum W and Z bosons produced in pp collisions and decaying to all-hadronic final states. The data used in the analysis were recorded by the ATLAS detector at the CERN Large Hadron Collider at a centre-of-mass energy of âs = 7 TeV;{\rm Te}{\rm V}4.6\;{\rm f}{{{\rm b}}^{-1}}{{p}_{{\rm T}}}\gt 320\;{\rm Ge}{\rm V}|\eta |\lt 1.9{{\sigma }_{W+Z}}=8.5\pm 1.7$ pb and is compared to next-to-leading-order calculations. The selected events are further used to study jet grooming techniques
- âŠ