Genome instability, associated with chromosome breakage syndromes and most human
cancers, is still poorly understood. In the yeast Saccharomyces
cerevisiae, numerous genes with roles in the preservation of genome
integrity have been identified. DNA-damage-checkpoint-deficient yeast cells that
lack Sgs1, a RecQ-like DNA helicase related to the human
Bloom's-syndrome-associated helicase BLM, show an increased rate of
genome instability, and we have previously shown that they accumulate recurring
chromosomal translocations between three similar genes, CAN1,
LYP1 and ALP1. Here, the chromosomal
location, copy number and sequence similarity of the translocation targets
ALP1 and LYP1 were altered to gain insight
into the formation of complex translocations. Among 844 clones with chromosomal
rearrangements, 93 with various types of simple and complex translocations
involving CAN1, LYP1 and ALP1
were identified. Breakpoint sequencing and mapping showed that the formation of
complex translocation types is strictly dependent on the location of the
initiating DNA break and revealed that complex translocations arise via a
combination of interchromosomal translocation and template-switching, as well as
from unstable dicentric intermediates. Template-switching occurred between
sequences on the same chromosome, but was inhibited if the genes were
transferred to different chromosomes. Unstable dicentric translocations
continuously gave rise to clones with multiple translocations in various
combinations, reminiscent of intratumor heterogeneity in human cancers. Base
substitutions and evidence of DNA slippage near rearrangement breakpoints
revealed that translocation formation can be accompanied by point mutations, and
their presence in different translocation types within the same clone provides
evidence that some of the different translocation types are derived from each
other rather than being formed de novo. These findings provide
insight into eukaryotic genome instability, especially the formation of
translocations and the sources of intraclonal heterogeneity, both of which are
often associated with human cancers