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Ab initio potential-energy surface of LiH2 and its analytical representation
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A 170-point configuration-interaction involving all single and double excitations ab initio
potential-energy surface for the LiH2 molecule was calculated using (1ls3pld)/[6s3pld] and
(gs3p ld)/[6s3p ld] contracted Gaussian basis sets for lithium and hydrogen, respectively. Various
analytical functions were tested as representations of the discrete surface. A Pade-approximant
function with a Dunham expansion variable was found to give the most reliable representation with
a y of 1.3 X 10 . It is this surface that is recommended for rovibrational calculations.

I. INTRODUCTION

Traditionally, studies of vibrational and rotational in-
elastic scattering by the energy-change methods have em-
ployed ions as they are more easily energy selected and
analyzed than neutral species and can be detected with
high efficiency. Due to its electronic simplicity, many
studies have centered on unravelling the scattering col-
lisions of Li+ on H2. ' For example, Toennies and co-
workers' in 1973 reported measurement of differential
cross sections for resolved vibrational transitions at
center-of-mass collision energies (E, ) between 2 and 9
eV and in 1979 detailed measurements of rotationally in-
elastic scattering for E, at 0.6 eV.

Theoretical studies ' have consistently predicted
that the LiH2+ ion possesses C2, symmetry. The interac-
tion between H2 and Li is found to be highly anisotrop-
ic and the approach of Li+ ion to the H2 molecule
strongly inAuences the behavior of the potential-energy
curve at the equilibrium distance. The more sophisticat-
ed calculations "' ' have predicted that the ion
possesses a small binding energy of between 20 and 25
kJ mol ' with respect to Li++ H2 (which has been
confirmed by experiment ). These predictions are con-
sistent with the view that the LiH2 ion is a weak com-
plex between a hydrogen molecule and the Li+ ion.

In the early 1970s Lester ' calculated a 150-point
Hartree-Fock self-consistent-field (HF-SCF) potential-
energy surface of LiHz+. As is well known, the HF
method does not take into consideration electron correla-
tion, with the exception of the exchange term. Hence, ac-
curate HF wave functions account for -99.5% of the ab-
solute energy of a molecule. " Nevertheless, as the other
0.5% is greater than the experimental binding energy of
LiH2+, the absence of correlation corrections requires
essentially complete cancellation of the correlation effects
between products(s) and reactant(s) along any dissociative
channel in order for the HF potential to be realistic well
away from the minimum-energy geometry. It is argued
that the HF potential is a "good" approximation for this
collision complex, since the number of paired electrons is
the same in the products (Li++H2) as in the reactant
(LiH2+). ' '" However, as Kutzelnigg, Staemmler, and

Hoheisel' (KSH) have pointed out, for collinear Li -H2
collisions intra-H2 correlation is far from constant over a
range of geometries and, furthermore, for perpendicular
collisions it has a minimum for geometries close to the
minimum Cz, geometry. The conclusion drawn by KSH
(Ref. 10) is that Lester's SCF surface is poorly described
where dissociative collisions are possible. Nevertheless,
recently Russek, Snyder, and Furlan' have calculated a
—120-point HF-SCF surface for their classical trajectory
studies in which the scattering angles were in excess of a
few tenths of a degree, in order to model the vibrotational
energy in the Li+-D2 collision complex.

In 1973 KSH (Ref. 10) computed a HF-SCF and a
PNO (paired natural orbitals) -IEPA (independent elec-
tron pair approximation) potential-energy surface. Each
surface consisted of over 300 points. Unfortunately the
IEPA is not variational and so calculated pair-correlation
energies may be well in excess of CISD (configuration in-
teraction involving all single and double excitations from
a single HF reference determinant) correlation energies
obtained using the same basis set. ' This has been as-
cribed to the fact the IEPA ignores matrix elements be-
tween configurations belonging to different pairs and so it
tends to overestimate the correlation energy when several
orbitals occupy the same region of space. That is, the
method may lead to a positive or negative error in the to-
tal energy.

The only CISD calculation of LiH2+ in the literature is
that of Dixon, Gole, and Komornicki. ' In calculating
the Li+ amenity of H2 they showed that the second-order
Moiler-Plesset perturbation method (MP2) energies are in
excellent agreement with the CISD calculations near the
minimum geometry.

Quasiclassical, semiclassical, and approximate quantal
scattering calculations have relied heavily on Lester's
HF-SCF and the PNO-IEPA potential-energy surfaces.
Comparisons of experimental with theoretical differential
cross sections and transition probabilities due to rotation-
ally inelastic scattering at 0.6 eV have been made in order
to test the accuracy of ab initio methods. ' ' These
studies have shown that the experimental differential
cross sections are qualitatively in agreement. However,
they have been angularly shifted with respect to the
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theoretical result. Dim. culties have also been encountered
in reproducing vibrational transition probabilities in de-
tail. It is unclear whether the inadequacy is with the ab
initio potential-energy surfaces or with failures due to the
dynamic approximations. '

At present, Legendre expansions are generally used to
represent the potential-energy surface for scattering cal-
culations. This greatly facilitates the evaluation of cou-
pling matrix elements for rotational (with vibrational) en-
ergy transfer. However, in the case of rovibrational
calculations, a variety of analytical representations can be
employed.

It is the purpose of this paper to detail a CISD
potential-energy surface of LiH2+ and its analytical repre-
sentation, based upon a strategy developed by von Nagy-
Felsobuki and co-workers in order to calculate the vibra-
tional band origins of H3+ (Refs. 27-31) and Li3+ (Refs.
32-34). The surface and its analytical representation
difFer in a number of aspects from those already reported
in the literature. ' ' First, the Cl methodology is vari-
ational and so is an upper bound to the "exact" energy.
Second, a vibrational coordinate space for the discrete
surface is used and generated by a quadrature scheme
proposed by Harris, Engerholm, and Gwinn. Third, in
order to assist rovibrational calculations the coordinate
space is restricted to the small rL; „(where x is the
center of the H—H bond), small rHH, and 0 8 90
(where 8 is the angle between the vectors rL; „and rH H).
Hence we are sampling the potential-energy surface at
the region where a three-term Legendre expansion may
not be justified and where the approach of the Li+ ion to
the H2 molecule strongly influences the behavior of the
potential curve of the complex.

II. DISCRETE CISD SURFACE

We have adopted the CISD ansatz (including size
correction) embedded in the GAUsSIAN 86 suite of pro-
grams. For electronic calculations we have employed
the (lls3pld)/[6s3pld] lithium basis of Gerber and
Schumacher with the d exponent being 0.15 and the
(8s3p ld)/[6s3pld] hydrogen basis of Dykstra and
Swope. This compares favorably to the (9s3p)/[Ss3p]
lithium and (6s3p) hydrogen basis used by Lester and
the Gaussian lobe basis (9s4p)/[6s4p] for lithium and
(Ss3p)/[3s3p] hydrogen basis used by KSH. ' It should

be noted that in addition to the nuclear centered lobe
functions KSH' employed p-type bond functions which
in hindsight they concluded, "...improves the energy for
intermediate H-H distances but is less effective or has
even the opposite effect for very large or very small dis-
tances. "

Table I compares the CISD and PNO-IEPA energies
for H2 with the exact results calculated by Kolos and
Wolniewicz. It is clear that not only are each of the
CISD calculated points more accurate than the PNO-
IEPA calculations but the CISD points parallel the exact
surface far more closely (with an error of 0.001 Ez for the
CISD calculations compared to 0.003—0.006E& for the
PNO-IEPA calculations). Table I also highlights the
problems with employing a nonvariational methodology
in constructing a potential-energy surface. At a distance
of 1.2ao the PNO-IEPA methodology gives a spurious
energy (i.e., -0.003E& lower than the exact result). This
brings into question the correlation energy calculated by
the PNO-IEPA methodology at various points of the en-
ergy hypersurface of Li+-H2.

The exact HF energy of the Li+ ion is —7.23641E&, '

whereas our lithium basis yields —7.236 21E&, a
difFerence of only 0.0002E&. On the other hand, both
Lester and KSH (Ref. 10) obtained SCF energies
0.0004E& higher than the exact HF value. Interestingly,
our CISD energy is 0.02E& lower than our SCF energy,
whereas in the case of H2 the difference is 0.04Eh at an
rH H distance of 1.4ao. Hence, the exclusion of correla-
tion efFects would yield incorrect relative energies for the
LiH2+ molecule and the disociated Li+-Hz.

Ab initio investigations have consistently predicted the
LiHz+ molecule to have C2, symmetry. The predicted
equilibrium geometries and minimum potential energies
(EQ ) using various basis sets and methodologies are
presented in Table II. Our HF optimization gives an Eo
energy of —8.378902 E„ for the Cz, geometry, with a
PLI H separation of 3 .893 a o and a 0H L; H bond angle of
20.8'. Our calculated HF Eo is the lowest so far reported
in the literature (as is illustrated in Table II) thereby vin-
dicating the size of the basis set employed. The respec-
tive CISD calculations also gave the lowest variational Cl
energy, with a predicted geometry not greatly dissimilar
to our HF geometry (i.e., C2, geometry with an rL;
separation of 3.860ao and a OH i; H bond angle of

TABLE I. Comparison of Cl energies for H2. (All energies in Hartrees. The symbol 6 represents
the difference between exact and calculated energies. }

~H-H ~ao

1.0
1.2
1.4
1.8
2.4
3.0

Exact'

—1.124 54
—1.164 93
—1.174 47
—1.155 07
—1.102 42
—1.057 32

This work
CISD (5)

—1.123 24(0.001 30)
—1.163 79(0.001 14)
—1.173 39(0.001 08)
—1.153 94(0.001 13)
—1.101 10(0.001 32)
—1.055 98(0.001 34)

PNO-IEPA (6)
—1.11990(0.004 64)

—1.167 97( —0.003 04)
—1.17090(0.003 57)
—1.151 73(0.003 34)
—1.098 51(0.003 91)
—1.051 67{0.005 65)

'See Ref. 40.
"See Ref. 10.
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21.2').
The CISD calculations indicate that LiHz+ is weakly

bound with respect to Li++Hz by 24.9 kJmol '. This
compares favorably to the experimental value of 27.2
kJmol ' (Ref. 20) and with other theoretically calculated
values of 21.8 (SCF)," 23.4 (MP2), ' 23.1 (SCF), ' 21.3
(CISD), ' and 21.5 kJ mol ' (MP2). '

The discrete CISD potential-energy surface consists of
energies at 170 geometries with a maximum energy of
—7.675 238 Ez. An initial set of 39 points was calcu-
lated along the vibrational or displacement t coordinates
(for a C2, triatomic) as derived by Carney, Langhoft; and
Curtiss. The t coordinates are described in Fig. 1 and
are related to the three bond lengths via

b be 2A,—t, + t, —btz —at3 +
MH P Pg m Ll

—b be
t1 +btz

Pf
—Ra—

2 1/2

+ Rb — bt3—2A,

mL mH

—a ae
t1 t1+atz+b~3

'V PT
2
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—b be
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mLi
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O'V

(2)

2A, a
r, 3

= - 2Rb+
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(3)

where

4b 2

2+ 2
mLi mH

0 . 8a =cos—, b =sin —, A. =2' 2'
1/2

ey= 1—2 4b z 2cos0e=A,
mLI mH m Ll

4b

mH

TABLE II. Comparison of ab initio results for LiH2 .

Reference Method Li basis H basis 0 (deg)rLi-H /ao Eo/E~

6
7
8-9
10

DIM
FSGF
HF
HF
PNO-IEPA
HF
HF
MP2b
FSGF
HF'
MP2
HF
SCEPb
HF
HF
CISDb
MP2b
HF
CISD

5.0
3.436
3.83
3.81
3.81
3.975
4.269
4.269
3.97
4.050
4.050
4.06
4.06
3.872
3.957
3.957
3.957
3.893
3.860

16.1
25.3
21.1
21.1
21.1
20.4
18.7
18.7
20.3
19.9
19.9
19.5
19.5
21.0
20.4
20.4
20.4
20.8
21.2

—6.920
—8.3783
—8.3782
—8.4560
—8.3744
—8.3645
—8.4007
—6.9201
—8.3777
—8.4200
—8.3682
—8.4079
—8.3787
—8.3775—8.4151
—8.4071
—8.3789
—8.4351

(2s )

(9s 3p) /[5s 3p]
(9s4p) /[6s4p]
{9s4p)/[6s4p]

(8s 5p)
4-31G
3 1G )jc g

(2s)
6-311G(2d, 2p)
6-311G(2d, 2p)

31G+g
3

]GAL)fc

(9s5p)
( 1 ls4p2d)/[Ss2p ld]
(1 ls4p2d)/[5s2p ld]
{1 ls4p2d)/[5s2p ld]
( 1 ls 3p 1d ) /[6s 3p 1d]
( 1 ls 3p 1d ) /[6s 3p 1d]

(6s 3p)
{Ss3p)/[3s3p]
( Ss 3p) /[3s 3p]

(6s4p)11
13

14
15

16

17
18

(9s5p)
( 5s 2p) /[3s 2p ]
(Ss2p)/[3s2p]
(Ss2p)/[3s2p]

(8s3p ld)/[6s3p ld]
(8s3p ld)/[6s3p ld]

This work

'Predicted binding energy with respect to Li++ H2 is 10.5 kJ mol
"Single-point calculation at optimized HF geometry.
'Single-point calculation at the MP2 optimized geometry.
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Term Expansion parameter
Expansion coefficient

Numerator Denominator

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

1

p&+P2
p3
p&+pe
p3
P~P2

p2P3+ p ip3

pi+P2
p3
pip2+ pui
P ip3+P2P3
P ip3+P2P3
pip2P3
p&+pz
p3

P ]pe+ p2P
p &P3+P2P3

P ~P3+P2P3

P &P2P3+P &P2P3
2

p &P2p3

pi+pc
5

p3

P ~P3+P2P3
pip3+ p2P3

p~p3+ pip~3
3

p~p2p3

P3
pip2+ pei
P ~P3+P2P3
P iP3+P2P3

p 1P2p3+ P2p& p3
4

PlP2P3

p&p2P3

—178.2047
—336.4846
—161.7542
—208.6695

41.8770
—695.5297
—292.5161
—94.2672

2.0409
—354.4265
—157.0927

98.3250
—681.6319
—43.3469
—8.8394

—39.7770
—66.8614

18.4490
—89.4748

81.1499
—360.3963

106.3896
—2.9803
—0.1271

—46.0157
—38.8884
—7.8769
56.0775
30.0708
13.0266

—12.3412
30.9005

—145.8230
30.9203

—1.5057
0.0213

—0.8166
—2.3367
—0.3036
—2.4217

4.4660
1.2108

—37.2704
—7.0436

5.8807
—3.2093
51.3713
28.0094
11.7577

—51.1058

—1.000 00
—0.888 19

0.092 31
—0.293 81

0.100 78
—1.11638

0.155 11
—0.233 76
—0.059 72

0.306 68
0.13708
0.125 34

—0.336 84
—0.017 44

O.0OO66
0.000 52
0.024 61

—0.002 95
0.004 43

—0.008 74
0.002 58
0.002 59

1.3X 10

TABLE III. Expansion coefficients for Dunham-
Pade-Approximant expansion of the LiH~+ potential-energy
surface.

type expansion variables give the smallest sum of squares
of residuals. In particular, the g for the sixth-order
Morse-Dunham and the sixth-order Ogilvie are
1.4X 10 and 4.5 X 10, respectively.

Figures 2(a) —2(c) show energy contour plots using the
sixth-order Ogilvie fit, whereas Figs. 2(d) —2(f) show ener-

gy contour plots using the sixth-order Morse-Dunham fit
to represent the discrete surface. In all figures each con-
tour represents an energy increment of 50 kJ mol ' (with
approximately 2.5 kJmol ' available from ambient sur-
roundings).

Unlike the sixth-order Ogilvie fit, graphical examina-
tion of the physical nature of the sixth-order Morse-
Dunham fit in the region defined by the data indicates
that the functions do not satisfy the criterion of being
smooth everywhere with monotonically increasing repul-
sive walls. As in the case of H3+ (Ref. 29) and Li3+ (Ref.
33), some of the high-order coefficients for this fit and the
sixth order Ogilvie fit are large. Singular value decompo-
sition (SVD) analysis on the sixth-order Ogilvie fit (set-
ting o.

~7 to zero) yields a y of 4.8X 10, which has only
marginally degraded the fit. A similar SVD analysis of
the sixth-order Morse-Dunham fit did not eliminate
singularities.

The g of the power series fits are too poor to be ap-
propriate for rovibrational or scattering calculations.
Consequently, investigations were conducted on the use
of Fade approximants. Pade approximants have been
used as analytical representations of diatomic potential-
energy curves. Pade approximants are rational
functions in which the numerator and denominator are
power-series expansions (of order m and n, respectively)
of a variable p. That is,

P(m, n)=
g ~;,v, PIP&3

i =0 j=Ok =0
n n n—X X X b;,'kP'is2i3

i'=0 j'=0 k'=0

(6)

such that (i +j +k) + m and (i '+j '+ k') + n.
The six variables previously used for the power-series

expansions were also used as expansion variables in the
Pade-approximant representations. In each case, the g
of the ensuing fits are lower than those for the respective
power-series representations. However, on graphical ex-
aminations it was revealed that the Pade surfaces suffered
from a substantial increase in the number of singularities.
Moreover, the singularities are not removed by use of the
SVD analysis. For example, Figs. 3(a)—3(c) give the ener-

gy contour plots with respect to t coordinates for a sixth-
order Pade approximant (denoted P(6,6)] using Dunham
expansion variables. Of all the variants, this fit gives the
lowest' of 1.1X10

An alternative form of the Pade approximant was test-
ed to represent the LiH2+ surface. It has the form

2(r, r,)—
(r, +r, )

The sixth-order Morse-Dunham —type and the Ogilvie-

P'(m, n) =
12 23 13

X X X &;,~nin+3
i=Oj =Ok=0

n n n

2 b;ksIs'2i3
i'=0 j'=0 k'=0
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where (i +j +k) ~m and (i'+ j'+k') ~n .The two r„;H

separations are represented by r, 2 and r23 and the rH H

separation by r&3. This function gives a small y for all
the variants but in general the high-order expansion
coefficients are large and graphical inspections of the con-
tour plots revealed many singularities. However, the
Dunham expansion which is sixth order in the numerator
and fourth order in the denominator [that is, P'(6,4)]
gives a function that is smooth and has monotonically in-
creasing repulsive walls over the region defined by the
data points. The fit gives a y of 1.3 X 10, which indi-
cates that this fit is substantially more accurate than the
best power-series expansion. Contour plots for this sur-
face are given in Figs. 3(d) —3(f) and the expansion
coefficients of the P'(6,4) Pade approximant are given in

Table III. It is this surface that is recommended to be
used in calculations involving rovibrational proper-

19,29 —34
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