438 research outputs found

    Grimage: 3D modeling for remote collaboration and telepresence

    Get PDF
    Nature de la présentation: démonstrationInternational audienceReal-time multi-camera 3D modeling provides full-body geometric and photometric data on the objects present in the acquisition space. It can be used as an input device for rendering textured 3D models, and for computing interactions with virtual objects through a physical simulation engine. In this paper we present a work in progress to build a collaborative environment where two distant users, each one 3D modeled in real-time, interact in a shared virtual world

    A STAT3-decoy oligonucleotide induces cell death in a human colorectal carcinoma cell line by blocking nuclear transfer of STAT3 and STAT3-bound NF-κB

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The transcription factor STAT3 (signal transducer and activator of transcription 3) is frequently activated in tumor cells. Activated STAT3 forms homodimers, or heterodimers with other TFs such as NF-κB, which becomes activated. Cytoplasmic STAT3 dimers are activated by tyrosine phosphorylation; they interact with importins via a nuclear localization signal (NLS) one of which is located within the DNA-binding domain formed by the dimer. In the nucleus, STAT3 regulates target gene expression by binding a consensus sequence within the promoter. STAT3-specific decoy oligonucleotides (STAT3-decoy ODN) that contain this consensus sequence inhibit the transcriptional activity of STAT3, leading to cell death; however, their mechanism of action is unclear.</p> <p>Results</p> <p>The mechanism of action of a STAT3-decoy ODN was analyzed in the colon carcinoma cell line SW 480. These cells' dependence on activated STAT3 was verified by showing that cell death is induced by STAT3-specific siRNAs or Stattic. STAT3-decoy ODN was shown to bind activated STAT3 within the cytoplasm, and to prevent its translocation to the nucleus, as well as that of STAT3-associated NF-κB, but it did not prevent the nuclear transfer of STAT3 with mutations in its DNA-binding domain. The complex formed by STAT3 and the STAT3-decoy ODN did not associate with importin, while STAT3 alone was found to co-immunoprecipitate with importin. Leptomycin B and vanadate both trap STAT3 in the nucleus. They were found here to oppose the cytoplasmic trapping of STAT3 by the STAT3-decoy ODN. Control decoys consisting of either a mutated STAT3-decoy ODN or a NF-κB-specific decoy ODN had no effect on STAT3 nuclear translocation. Finally, blockage of STAT3 nuclear transfer correlated with the induction of SW 480 cell death.</p> <p>Conclusions</p> <p>The inhibition of STAT3 by a STAT3-decoy ODN, leading to cell death, involves the entrapment of activated STAT3 dimers in the cytoplasm. A mechanism is suggested whereby this entrapment is due to STAT3-decoy ODN's inhibition of active STAT3/importin interaction. These observations point to the high potential of STAT3-decoy ODN as a reagent and to STAT3 nucleo-cytoplasmic shuttling in tumor cells as a potential target for effective anti-cancer compounds.</p

    A simulation study investigating potential diffusion-based MRI signatures of microstrokes

    Get PDF
    ABSTRACT: Recent studies suggested that cerebrovascular micro-occlusions, i.e. microstokes, could lead to ischemic tissue infarctions and cognitive deficits. Due to their small size, identifying measurable biomarkers of these microvascular lesions remains a major challenge. This work aims to simulate potential MRI signatures combining arterial spin labeling (ASL) and multi-directional diffusion-weighted imaging (DWI). Driving our hypothesis are recent observations demonstrating a radial reorientation of microvasculature around the micro-infarction locus during recovery in mice. Synthetic capillary beds, randomly- and radially-oriented, and optical coherence tomography (OCT) angiograms, acquired in the barrel cortex of mice (n = 5) before and after inducing targeted photothrombosis, were analyzed. Computational vascular graphs combined with a 3D Monte-Carlo simulator were used to characterize the magnetic resonance (MR) response, encompassing the effects of magnetic field perturbations caused by deoxyhemoglobin, and the advection and diffusion of the nuclear spins. We quantified the minimal intravoxel signal loss ratio when applying multiple gradient directions, at varying sequence parameters with and without ASL. With ASL, our results demonstrate a significant difference (p < 0.05) between the signal-ratios computed at baseline and 3 weeks after photothrombosis. The statistical power further increased (p < 0.005) using angiograms measured at week 4. Without ASL, no reliable signal change was found. We found that higher ratios, and accordingly improved significance, were achieved at lower magnetic field strengths (e.g., B0 = 3T) and shorter echo time TE (< 16 ms). Our simulations suggest that microstrokes might be characterized through ASL-DWI sequence, providing necessary insights for posterior experimental validations, and ultimately, future translational trials

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Measurement of the W±Z boson pair-production cross section in pp collisions at √s=13TeV with the ATLAS detector

    Get PDF
    published_or_final_versio

    Measurement of the View the tt production cross-section using eμ events with b-tagged jets in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This paper describes a measurement of the inclusive top quark pair production cross-section (σtt¯) with a data sample of 3.2 fb−1 of proton–proton collisions at a centre-of-mass energy of √s = 13 TeV, collected in 2015 by the ATLAS detector at the LHC. This measurement uses events with an opposite-charge electron–muon pair in the final state. Jets containing b-quarks are tagged using an algorithm based on track impact parameters and reconstructed secondary vertices. The numbers of events with exactly one and exactly two b-tagged jets are counted and used to determine simultaneously σtt¯ and the efficiency to reconstruct and b-tag a jet from a top quark decay, thereby minimising the associated systematic uncertainties. The cross-section is measured to be: σtt¯ = 818 ± 8 (stat) ± 27 (syst) ± 19 (lumi) ± 12 (beam) pb, where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the integrated luminosity and the LHC beam energy, giving a total relative uncertainty of 4.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. A fiducial measurement corresponding to the experimental acceptance of the leptons is also presented

    Search for the direct production of charginos and neutralinos in final states with tau leptons in √s=13 TeV collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with at least two hadronically decaying tau leptons is presented. The analysis uses a dataset of pp collisions corresponding to an integrated luminosity of 36.1 fb−1, recorded with the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 13TeV.Nosignificant deviation from the expected Standard Model background is observed. Limits are derived in scenarios of ˜χ+1 ˜χ−1 pair production and of ˜χ±1 ˜χ02 and ˜χ+1 ˜χ−1 production in simplified models where the neutralinos and charginos decay solely via intermediate left-handed staus and tau sneutrinos, and the mass of the ˜ τL state is set to be halfway between the masses of the ˜χ±1 and the ˜χ01. Chargino masses up to 630 GeV are excluded at 95% confidence level in the scenario of direct production of ˜χ+1 ˜χ−1 for a massless ˜χ01. Common ˜χ±1 and ˜χ02 masses up to 760 GeV are excluded in the case of production of ˜χ±1 ˜χ02 and ˜χ+1 ˜χ−1 assuming a massless ˜χ01. Exclusion limits for additional benchmark scenarios with large and small mass-splitting between the ˜χ±1 and the ˜χ01 are also studied by varying the ˜ τL mass between the masses of the ˜χ±1 and the ˜χ01
    corecore