155 research outputs found

    Organización modular de la cadena respitatoria de mamíferos y optogenética mitocondrial

    Get PDF
    Proponemos que la cadena respiratoria (CR) de mamíferos se organiza en módulos formados por elementos individuales o asociados entre sí, lo que determina la existencia de diferentes rutas para el flujo de electrones. Esta composición de la cadena respiratoria de mamíferos es acorde al recientemente modelo de plasticidad propuesto para la misma, según el cual, la organización del sistema se podría modular atendiendo a las necesidades fisiológicas o la demanda bioenergética de las células. Además hemos identificado por primera vez una proteína (Cox7a2l) que actúa como factor de ensamblaje de supercomplejos, esencial en la interacción entre CIII y CIV. En un último apartado, pretendemos abordar el estudio de la CR desde una aproximación de optogenética, a través de la expresion de la Bacteriorrodopsina en la membrana interna mitocondrial

    Single-molecule in vivo imaging of bacterial respiratory complexes indicates delocalized oxidative phosphorylation

    Get PDF
    Chemiosmotic energy coupling through oxidative phosphorylation (OXPHOS) is crucial to life, requiring coordinated enzymes whose membrane organization and dynamics are poorly understood. We quantitatively explore localization, stoichiometry, and dynamics of key OXPHOS complexes, functionally fluorescent protein-tagged, in Escherichia coli using low-angle fluorescence and superresolution microscopy, applying single-molecule analysis and novel nanoscale co-localization measurements. Mobile 100-200nm membrane domains containing tens to hundreds of complexes are indicated. Central to our results is that domains of different functional OXPHOS complexes do not co-localize, but ubiquinone diffusion in the membrane is rapid and long-range, consistent with a mobile carrier shuttling electrons between islands of different complexes. Our results categorically demonstrate that electron transport and proton circuitry in this model bacterium are spatially delocalized over the cell membrane, in stark contrast to mitochondrial bioenergetic supercomplexes. Different organisms use radically different strategies for OXPHOS membrane organization, likely depending on the stability of their environment

    The Quantum Mitochondrion and Optimal Health

    Get PDF
    A sufficiently complex set of molecules, if subject to perturbation, will self-organise and show emergent behaviour. If such a system can take on information it will become subject to natural selection. This could explain how self-replicating molecules evolved into life and how intelligence arose. A pivotal step in this evolutionary process was of course the emergence of the eukaryote and the advent of the mitochondrion, which both enhanced energy production per cell and increased the ability to process, store and utilise information. Recent research suggest that from its inception life embraced quantum effects such as “tunnelling” and “coherence” while competition and stressful conditions provided a constant driver for natural selection. We believe that the biphasic adaptive response to stress described by hormesis – a process that captures information to enable adaptability, is central to this whole process. Critically, hormesis could improve mitochondrial quantum efficiency, improving the ATP/ROS ratio, while inflammation, which is tightly associated with the aging process, might do the opposite. This all suggests that to achieve optimal health and healthy ageing, one has to sufficiently stress the system to ensure peak mitochondrial function, which itself could reflect selection of optimum efficiency at the quantum level

    Regulation of the Stress-Activated Degradation of Mitochondrial Respiratory Complexes in Yeast

    Full text link
    [EN] Repair and removal of damaged mitochondria is a key process for eukaryotic cell homeostasis. Here we investigate in the yeast model how different protein complexes of the mitochondrial electron transport chain are subject to specific degradation upon high respiration load and organelle damage. We find that the turnover of subunits of the electron transport complex I equivalent and complex III is preferentially stimulated upon high respiration rates. Particular mitochondrial proteases, but not mitophagy, are involved in this activated degradation. Further mitochondrial damage by valinomycin treatment of yeast cells triggers the mitophagic removal of the same respiratory complexes. This selective protein degradation depends on the mitochondrial fusion and fission apparatus and the autophagy adaptor protein Atg11, but not on the mitochondrial mitophagy receptor Atg32. Loss of autophagosomal protein function leads to valinomycin sensitivity and an overproduction of reactive oxygen species upon mitochondrial damage. A specific event in this selective turnover of electron transport chain complexes seems to be the association of Atg11 with the mitochondrial network, which can be achieved by overexpression of the Atg11 protein even in the absence of Atg32. Furthermore, the interaction of various Atg11 molecules via the C-terminal coil domain is specifically and rapidly stimulated upon mitochondrial damage and could therefore be an early trigger of selective mitophagy in response to the organelles dysfunction. Our work indicates that autophagic quality control upon mitochondrial damage operates in a selective manner.This work was funded by grants from Ministerio de Economia y Competitividad (BFU2011-23326) and from Ministerio de Economia, Industria y Competitividad (BFU2016-75792-R). AT-G received a pre-doctoral fellowship from Consejo Superior de Investigaciones Cientificas (JAE-Pre).Timón Gómez, A.; Sanfeliu-Redondo, D.; Pascual-Ahuir Giner, MD.; Proft, MH. (2018). Regulation of the Stress-Activated Degradation of Mitochondrial Respiratory Complexes in Yeast. Frontiers in Microbiology. 9. https://doi.org/10.3389/fmicb.2018.00106S

    Single-molecule studies of the dynamics and interactions of bacterial OXPHOS complexes

    Get PDF
    Although significant insight has been gained into biochemical, genetic and structural features of oxidative phosphorylation (OXPHOS) at the single-enzyme level, relatively little was known of how the component complexes function together in time and space until recently. Several pioneering single-molecule studies have emerged over the last decade in particular, which have illuminated our knowledge of OXPHOS, most especially on model bacterial systems. Here, we discuss these recent findings of bacterial OXPHOS, many of which generate time-resolved information of the OXPHOS machinery with the native physiological context intact. These new investigations are transforming our knowledge of not only the molecular arrangement of OXPHOS components in live bacteria, but also of the way components dynamically interact with each other in a functional state. These new discoveries have important implications towards putative supercomplex formation in bacterial OXPHOS in particular

    Granzyme B-induced mitochondrial ROS are required for apoptosis

    Get PDF
    Caspases and the cytotoxic lymphocyte protease granzyme B (GB) induce reactive oxygen species (ROS) formation, loss of transmembrane potential and mitochondrial outer membrane permeabilization (MOMP). Whether ROS are required for GB-mediated apoptosis and how GB induces ROS is unclear. Here, we found that GB induces cell death in an ROS-dependent manner, independently of caspases and MOMP. GB triggers ROS increase in target cell by directly attacking the mitochondria to cleave NDUFV1, NDUFS1 and NDUFS2 subunits of the NADH: ubiquinone oxidoreductase complex I inside mitochondria. This leads to mitocentric ROS production, loss of complex I and III activity, disorganization of the respiratory chain, impaired mitochondrial respiration and loss of the mitochondrial cristae junctions. Furthermore, we have also found that GB-induced mitocentric ROS are necessary for optimal apoptogenic factor release, rapid DNA fragmentation and lysosomal rupture. Interestingly, scavenging the ROS delays and reduces many of the features of GB-induced death. Consequently, GB-induced ROS significantly promote apoptosis

    Translational approaches to restoring mitochondrial function in Parkinson's disease

    Get PDF
    There is strong evidence of a key role for mitochondrial dysfunction in both sporadic and all forms of familial Parkinson's disease (PD). However, none of the clinical trials carried out with putative mitochondrial rescue agents has been successful. Firm establishment of a wet biomarker or a reliable readout from imaging studies detecting mitochondrial dysfunction and reflecting disease progression is also awaited. We will provide an overview of our current knowledge about mitochondrial dysfunction in PD and related drug screens. We will also summarize previously undertaken mitochondrial wet biomarker studies and relevant imaging studies with particular focus on 31P-MRI Spectroscopy. We will conclude with an overview of clinical trials which tested putative mitochondrial rescue agents in PD patients. Parkinson's disease is a common, relentlessly progressive neurodegenerative disorder. The pathological hallmark is loss of dopaminergic neurons in the substantia nigra. The resulting motor presentation includes rest tremor, bradykinesia and rigidity but the importance of non-motor symptoms such as cognitive impairment and depression is increasingly recognized, too. Currently available dopaminergic treatment often only addresses the motor impairment partially. This review will summarize our current knowledge about mitochondrial dysfunction as a key target for disease-modifying treatment for PD. We will also provide an update on mitochondrial readouts in PD patients, namely imaging and putative mitochondrial biomarkers, which may become highly relevant in the context of future drug trials. This article is protected by copyright. All rights reserved

    Being right on Q: shaping eukaryotic evolution

    Full text link
    corecore