2,135 research outputs found

    Theoretical investigation of gas-surface interactions

    Get PDF
    A Dirac-Hartree-Fock code was developed for polyatomic molecules. The program uses integrals over symmetry-adapted real spherical harmonic Gaussian basis functions generated by a modification of the MOLECULE integrals program. A single Gaussian function is used for the nuclear charge distribution, to ensure proper boundary conditions at the nuclei. The Gaussian primitive functions are chosen to satisfy the kinetic balance condition. However, contracted functions which do not necessarily satisfy this condition may be used. The Fock matrix is constructed in the scalar basis and transformed to a jj-coupled 2-spinor basis before diagonalization. The program was tested against numerical results for atoms with a Gaussian nucleus and diatomic molecules with point nuclei. The energies converge on the numerical values as the basis set size is increased. Full use of molecular symmetry (restricted to D sub 2h and subgroups) is yet to be implemented

    All-electron molecular Dirac-Hartree-Fock calculations: Properties of the group IV monoxides GeO, SnO and PbO

    Get PDF
    Dirac-Hartree-Fock calculations have been carried out on the ground states of the group IV monoxides GeO, SnO and PbO. Geometries, dipole moments and infrared data are presented. For comparison, nonrelativistic, first-order perturbation and relativistic effective core potential calculations have also been carried out. Where appropriate the results are compared with the experimental data and previous calculations. Spin-orbit effects are of great importance for PbO, where first-order perturbation theory including only the mass-velocity and Darwin terms is inadequate to predict the relativistic corrections to the properties. The relativistic effective core potential results show a larger deviation from the all-electron values than for the hydrides, and confirm the conclusions drawn on the basis of the hydride calculations

    Local Relativistic Exact Decoupling

    Full text link
    We present a systematic hierarchy of approximations for {\it local} exact-decoupling of four-component quantum chemical Hamiltonians based on the Dirac equation. Our ansatz reaches beyond the trivial local approximation that is based on a unitary transformation of only the atomic block-diagonal part of the Hamiltonian. Systematically, off-diagonal Hamiltonian matrix blocks can be subjected to a unitary transformation to yield relativistically corrected matrix elements. The full hierarchy is investigated with respect to the accuracy reached for the electronic energy and molecular properties on a balanced test molecule set that comprises molecules with heavy elements in different bonding situations. Our atomic (local) assembly of the unitary transformation needed for exact decoupling provides an excellent local approximation for any relativistic exact-decoupling approach. Its order-N2N^2 scaling can be further reduced to linear scaling by employing the neighboring-atomic-blocks approximation. Therefore, it is an efficient relativistic method perfectly well suited for relativistic calculations on large molecules. If a large molecule contains many light atoms (typically hydrogen atoms), the computational costs can be further reduced by employing a well-defined non-relativistic approximation for these light atoms without significant loss of accuracy

    Long-chain omega-3 fatty acids and the brain: A review of the independent and shared effects of EPA, DPA and DHA

    Get PDF
    Omega-3 polyunsaturated fatty acids (PUFAs) exhibit neuroprotective properties and represent a potential treatment for a variety of neurodegenerative and neurological disorders. However, traditionally there has been a lack of discrimination between the different omega-3 PUFAs and effects have been broadly accredited to the series as a whole. Evidence for unique effects of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and more recently docosapentaenoic acid (DPA) is growing. For example, beneficial effects in mood disorders have more consistently been reported in clinical trials using EPA; whereas, with neurodegenerative conditions such as Alzheimer’s disease, the focus has been on DHA. DHA is quantitatively the most important omega-3 PUFA in the brain, and consequently the most studied, whereas the availability of high purity DPA preparations has been extremely limited until recently, limiting research into its effects. However, there is now a growing body of evidence indicating both independent and shared effects of EPA, DPA and DHA. The purpose of this review is to highlight how a detailed understanding of these effects is essential to improving understanding of their therapeutic potential. The review begins with an overview of omega-3 PUFA biochemistry and metabolism, with particular focus on the central nervous system, where DHA has unique and indispensable roles in neuronal membranes with levels preserved by multiple mechanisms. This is followed by a review of the different enzyme-derived anti-inflammatory mediators produced from EPA, DPA and DHA. Lastly, the relative protective effects of EPA, DPA and DHA in normal brain aging and the most common neurodegenerative disorders are discussed. With a greater understanding of the individual roles of EPA, DPA and DHA in brain health and repair it is hoped that appropriate dietary recommendations can be established and therapeutic interventions can be more targeted and refined

    The Harlan Home

    Get PDF

    The 2S(+) - 2P separation in KO

    Get PDF
    The 2S(+) - 2P separation in KO is investigated using large basis sets and high levels of correlation treatment. Relativistic effects are included at the Dirac-Fock level and reduce the separation only slightly. The basis set superposition error is considered in detail. On the basis of these calculations, our best estimate places the 2p sub 3/2 state about 200 cm(exp -1) above the ground 2 sigma(+) state in agreement with our previous estimate

    Amyloid-Beta Peptide, Oxidative Stress and Inflammation in Alzheimer's Disease: Potential Neuroprotective Effects of Omega-3 Polyunsaturated Fatty Acids

    Get PDF
    Alzheimer's disease is the most common form of dementia in the elderly and is a progressive neurodegenerative disorder characterised by a decline in cognitive function and also profound alterations in mood and behaviour. The pathology of the disease is characterised by the presence of extracellular amyloid peptide deposits and intracellular neurofibrillary tangles in the brain. Although many hypotheses have been put forward for the aetiology of the disease, increased inflammation and oxidative stress appear key to be features contributing to the pathology. The omega-3 polyunsaturated fats, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) have well-characterised effects on inflammation and may have neuroprotective effects in a number of neurodegenerative conditions including Alzheimer's disease. The aims of this paper are to review the neuroprotective effects of EPA and DHA in Alzheimer's disease, with special emphasis on their role in modulating oxidative stress and inflammation and also examine their potential as therapeutic agents

    Maple procedures for the coupling of angular momenta. VI. LS-jj transformations

    Full text link
    Transformation matrices between different coupling schemes are required, if a reliable classification of the level structure is to be obtained for open-shell atoms and ions. While, for instance, relativistic computations are traditionally carried out in jj-coupling, a LSJ coupling notation often occurs much more appropriate for classifying the valence-shell structure of atoms. Apart from the (known) transformation of single open shells, however, further demand on proper transformation coefficients has recently arose from the study of open d- and f-shell elements, the analysis of multiple--excited levels, or the investigation on inner-shell phenomena. Therefore, in order to facilitate a simple access to LS jj transformation matrices, here we present an extension to the Racah program for the set-up and the transformation of symmetry-adapted functions. A flexible notation is introduced for defining and for manipulating open-shell configurations at different level of complexity which can be extended also to other coupling schemes and, hence, may help determine an optimum classification of atomic levels and processes in the future

    Principles of Irrigation Farming as Developed by American Field Experiments

    Get PDF
    Irrigation is the artificial application of water to the soil for the purpose of getting large and steady crop yields . It is supplementary to rainfall and the quantity of water applied and the time of application, therefore, must be determined by the character of the rainfall. Irrigation is usually practiced in those regions which have low rainfall as natural precipitation at such places is insufficient to meet the full water requirements of crops

    Polyatomic molecular Dirac-Hartree-Fock calculations with Gaussian basis sets

    Get PDF
    Numerical methods have been used successfully in atomic Dirac-Hartree-Fock (DHF) calculations for many years. Some DHF calculations using numerical methods have been done on diatomic molecules, but while these serve a useful purpose for calibration, the computational effort in extending this approach to polyatomic molecules is prohibitive. An alternative more in line with traditional quantum chemistry is to use an analytical basis set expansion of the wave function. This approach fell into disrepute in the early 1980's due to problems with variational collapse and intruder states, but has recently been put on firm theoretical foundations. In particular, the problems of variational collapse are well understood, and prescriptions for avoiding the most serious failures have been developed. Consequently, it is now possible to develop reliable molecular programs using basis set methods. This paper describes such a program and reports results of test calculations to demonstrate the convergence and stability of the method
    corecore