1,017 research outputs found

    Guidelines for the deployment and implementation of manufacturing scheduling systems

    Full text link
    It has frequently been stated that there exists a gap between production scheduling theory and practice. In order to put theoretical findings into practice, advances in scheduling models and solution procedures should be embedded into a piece of software - a scheduling system - in companies. This results in a process that entails (1) determining its functional features, and (2) adopting a successful strategy for its development and deployment. In this paper we address the latter question and review the related literature in order to identify descriptions and recommendations of the main aspects to be taken into account when developing such systems. These issues are then discussed and classified, resulting in a set of guidelines that can help practitioners during the process of developing and deploying a scheduling system. In addition, identification of these issues can provide some insights to drive theoretical scheduling research towards those topics more in demand by practitioners, and thus help to close the aforementioned gap.Framiñan Torres, JM.; Ruiz GarcĂ­a, R. (2012). Guidelines for the deployment and implementation of manufacturing scheduling systems. International Journal of Production Research. 50(7):1799-1812. doi:10.1080/00207543.2011.564670S17991812507Baek, D. H. (1999). A visualized human-computer interactive approach to job shop scheduling. International Journal of Computer Integrated Manufacturing, 12(1), 75-83. doi:10.1080/095119299130489Comesaña Benavides, J. A., & Carlos Prado, J. (2002). Creating an expert system for detailed scheduling. International Journal of Operations & Production Management, 22(7), 806-819. doi:10.1108/01443570210433562Bensana, E. 1986. An expert-system approach to industrial job-shop scheduling. In: Proceedings of the 1986 IEEE international conference on robotics and automation. 1986. Vol. 3, pp.1645–1650.Berglund, M., & Karltun, J. (2007). Human, technological and organizational aspects influencing the production scheduling process. International Journal of Production Economics, 110(1-2), 160-174. doi:10.1016/j.ijpe.2007.02.024Besbes, W., Teghem, J., & Loukil, T. (2010). Scheduling hybrid flow shop problem with non-fixed availability constraints. European J. of Industrial Engineering, 4(4), 413. doi:10.1504/ejie.2010.035652Bhattacharyya, S., & Koehler, G. J. (1998). Learning by Objectives for Adaptive Shop-Floor Scheduling. Decision Sciences, 29(2), 347-375. doi:10.1111/j.1540-5915.1998.tb01580.xBitran, G. R., & Tirupati, D. (1988). OR Practice—Development and Implementation of a Scheduling System for a Wafer Fabrication Facility. Operations Research, 36(3), 377-395. doi:10.1287/opre.36.3.377Buxey, G. (1989). Production scheduling: Practice and theory. European Journal of Operational Research, 39(1), 17-31. doi:10.1016/0377-2217(89)90349-4Chen, J.-F. (2004). Unrelated parallel machine scheduling with secondary resource constraints. The International Journal of Advanced Manufacturing Technology, 26(3), 285-292. doi:10.1007/s00170-003-1622-1Collinot, A., Le Pape, C., & Pinoteau, G. (1988). SONIA: A knowledge-based scheduling system. Artificial Intelligence in Engineering, 3(2), 86-94. doi:10.1016/0954-1810(88)90024-6Cowling, P. (2003). A flexible decision support system for steel hot rolling mill scheduling. Computers & Industrial Engineering, 45(2), 307-321. doi:10.1016/s0360-8352(03)00038-xDudek, R. A., Panwalkar, S. S., & Smith, M. L. (1992). The Lessons of Flowshop Scheduling Research. Operations Research, 40(1), 7-13. doi:10.1287/opre.40.1.7Dumond, E. J. (2005). Understanding and using the capabilities of finite scheduling. Industrial Management & Data Systems, 105(4), 506-526. doi:10.1108/02635570510592398Fox, M. S., & Smith, S. F. (1984). ISIS?a knowledge-based system for factory scheduling. Expert Systems, 1(1), 25-49. doi:10.1111/j.1468-0394.1984.tb00424.xFraminan, J. M., & Ruiz, R. (2010). Architecture of manufacturing scheduling systems: Literature review and an integrated proposal. European Journal of Operational Research, 205(2), 237-246. doi:10.1016/j.ejor.2009.09.026Freed, T., Doerr, K. H., & Chang, T. (2007). In-house development of scheduling decision support systems: case study for scheduling semiconductor device test operations. International Journal of Production Research, 45(21), 5075-5093. doi:10.1080/00207540600818351Gao, C and Tang, L. 2008. A decision support system for color-coating line in steel industry. In: Proceedings of the IEEE international conference on automation and logistics, ICAL 2008. 2008. pp.1463–1468.Grant, T. J. (1986). Lessons for O.R. from A.I.: A Scheduling Case Study. Journal of the Operational Research Society, 37(1), 41-57. doi:10.1057/jors.1986.7Graves, S. C. (1981). A Review of Production Scheduling. Operations Research, 29(4), 646-675. doi:10.1287/opre.29.4.646HALSALL, D. N., MUHLEMANN, A. P., & PRICE, D. H. R. (1994). A review of production planning and scheduling in smaller manufacturing companies in the UK. Production Planning & Control, 5(5), 485-493. doi:10.1080/09537289408919520Higgins, P. G. (1996). Interaction in hybrid intelligent scheduling. International Journal of Human Factors in Manufacturing, 6(3), 185-203. doi:10.1002/(sici)1522-7111(199622)6:33.0.co;2-6Kanet, J. J., & Adelsberger, H. H. (1987). Expert systems in production scheduling. European Journal of Operational Research, 29(1), 51-59. doi:10.1016/0377-2217(87)90192-5Kathawala, Y., & Allen, W. R. (1993). Expert Systems and Job Shop Scheduling. International Journal of Operations & Production Management, 13(2), 23-35. doi:10.1108/01443579310025286Kerr, R. M. (1992). Expert systems in production scheduling: Lessons from a failed implementation. Journal of Systems and Software, 19(2), 123-130. doi:10.1016/0164-1212(92)90063-pKnolmayer, G., Mertens, P., & Zeier, A. (2002). Supply Chain Management Based on SAP Systems. doi:10.1007/978-3-540-24816-3Leachman, R. C., Benson, R. F., Liu, C., & Raar, D. J. (1996). IMPReSS: An Automated Production-Planning and Delivery-Quotation System at Harris Corporation—Semiconductor Sector. Interfaces, 26(1), 6-37. doi:10.1287/inte.26.1.6MACCARTHY, B. L., & LIU, J. (1993). Addressing the gap in scheduling research: a review of optimization and heuristic methods in production scheduling. International Journal of Production Research, 31(1), 59-79. doi:10.1080/00207549308956713McKay, K. N., & Black, G. W. (2007). The evolution of a production planning system: A 10-year case study. Computers in Industry, 58(8-9), 756-771. doi:10.1016/j.compind.2007.02.002McKay, K. N., Safayeni, F. R., & Buzacott, J. A. (1988). Job-Shop Scheduling Theory: What Is Relevant? Interfaces, 18(4), 84-90. doi:10.1287/inte.18.4.84McKay, K. N., Morton, T. E., Ramnath, P., & Wang, J. (2000). ?Aversion dynamics? scheduling when the system changes. Journal of Scheduling, 3(2), 71-88. doi:10.1002/(sici)1099-1425(200003/04)3:23.0.co;2-0MCKAY, K., PINEDO, M., & WEBSTER, S. (2009). PRACTICE-FOCUSED RESEARCH ISSUES FOR SCHEDULING SYSTEMS*. Production and Operations Management, 11(2), 249-258. doi:10.1111/j.1937-5956.2002.tb00494.xMissbauer, H., Hauber, W., & Stadler, W. (2009). A scheduling system for the steelmaking-continuous casting process. A case study from the steel-making industry. International Journal of Production Research, 47(15), 4147-4172. doi:10.1080/00207540801950136Numao, M and Morishita, S. 1989. A scheduling environment for steel-making processes. In: Proceedings of the 5th conference on artificial intelligence applications. 1989. pp.279–286.Olhager, J., & Rapp, B. (1995). Operations Research Techniques in Manufacturing Planning and Control Systems. International Transactions in Operational Research, 2(1), 29-43. doi:10.1111/j.1475-3995.1995.tb00003.xPerez-Gonzalez, P., & Framinan, J. M. (2009). Scheduling permutation flowshops with initial availability constraint: Analysis of solutions and constructive heuristics. Computers & Operations Research, 36(10), 2866-2876. doi:10.1016/j.cor.2008.12.018Pinedo, M., & Yen, B. P.-C. (1997). Annals of Operations Research, 70, 359-378. doi:10.1023/a:1018986524234Portougal, V., & Robb, D. J. (2000). Production Scheduling Theory: Just Where Is It Applicable? Interfaces, 30(6), 64-76. doi:10.1287/inte.30.6.64.11623Reisman, A., Kumar, A., & Motwani, J. (1997). Flowshop scheduling/sequencing research: a statistical review of the literature, 1952-1994. IEEE Transactions on Engineering Management, 44(3), 316-329. doi:10.1109/17.618173Steffen, MS. 1986. A survey of artificial intelligence-based scheduling systems. In: Proceedings of the fall industrial engineering conference. 1986.Storer, R. H., Wu, S. D., & Vaccari, R. (1992). New Search Spaces for Sequencing Problems with Application to Job Shop Scheduling. Management Science, 38(10), 1495-1509. doi:10.1287/mnsc.38.10.1495Tang, L., & Wang, G. (2008). Decision support system for the batching problems of steelmaking and continuous-casting production. Omega, 36(6), 976-991. doi:10.1016/j.omega.2007.11.002T’kindt, V., Billaut, J.-C., Bouquard, J.-L., LentĂ©, C., Martineau, P., NĂ©ron, E., 
 Tacquard, C. (2005). The e-OCEA project: towards an Internet decision system for scheduling problems. Decision Support Systems, 40(2), 329-337. doi:10.1016/j.dss.2004.04.001Wiers, VCS. 1997. Human–computer interaction in production scheduling: Analysis and design of decision support systems for production scheduling tasks. Ph.D. Thesis, Technische Universiteit Eindhoven, NetherlandsWiers, V. C. S. (2002). A case study on the integration of APS and ERP in a steel processing plant. Production Planning & Control, 13(6), 552-560. doi:10.1080/09537280210160321Wiers, V. C. S., & Van Der Schaaf, T. W. (1997). A framework for decision support in production scheduling tasks. Production Planning & Control, 8(6), 533-544. doi:10.1080/095372897234876Zhang, L., Krishnamurthy, A., Malmborg, C. J., & Heragu, S. S. (2009). Variance-based approximations of transaction waiting times in autonomous vehicle storage and retrieval systems. European J. of Industrial Engineering, 3(2), 146. doi:10.1504/ejie.2009.02360

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≄20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  Όb-1 of data as a function of transverse momentum (pT) and the transverse energy (ÎŁETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∌0) correlation that grows rapidly with increasing ÎŁETPb. A long-range “away-side” (Δϕ∌π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ÎŁETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ÎŁETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁥2Δϕ modulation for all ÎŁETPb ranges and particle pT

    Search for pair-produced long-lived neutral particles decaying to jets in the ATLAS hadronic calorimeter in ppcollisions at √s=8TeV

    Get PDF
    The ATLAS detector at the Large Hadron Collider at CERN is used to search for the decay of a scalar boson to a pair of long-lived particles, neutral under the Standard Model gauge group, in 20.3fb−1of data collected in proton–proton collisions at √s=8TeV. This search is sensitive to long-lived particles that decay to Standard Model particles producing jets at the outer edge of the ATLAS electromagnetic calorimeter or inside the hadronic calorimeter. No significant excess of events is observed. Limits are reported on the product of the scalar boson production cross section times branching ratio into long-lived neutral particles as a function of the proper lifetime of the particles. Limits are reported for boson masses from 100 GeVto 900 GeV, and a long-lived neutral particle mass from 10 GeVto 150 GeV

    Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Measurement of the cross-section of high transverse momentum vector bosons reconstructed as single jets and studies of jet substructure in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of the cross-section for high transverse momentum W and Z bosons produced in pp collisions and decaying to all-hadronic final states. The data used in the analysis were recorded by the ATLAS detector at the CERN Large Hadron Collider at a centre-of-mass energy of √s = 7 TeV;{\rm Te}{\rm V}andcorrespondtoanintegratedluminosityof and correspond to an integrated luminosity of 4.6\;{\rm f}{{{\rm b}}^{-1}}.ThemeasurementisperformedbyreconstructingtheboostedWorZbosonsinsinglejets.ThereconstructedjetmassisusedtoidentifytheWandZbosons,andajetsubstructuremethodbasedonenergyclusterinformationinthejetcentre−of−massframeisusedtosuppressthelargemulti−jetbackground.Thecross−sectionforeventswithahadronicallydecayingWorZboson,withtransversemomentum. The measurement is performed by reconstructing the boosted W or Z bosons in single jets. The reconstructed jet mass is used to identify the W and Z bosons, and a jet substructure method based on energy cluster information in the jet centre-of-mass frame is used to suppress the large multi-jet background. The cross-section for events with a hadronically decaying W or Z boson, with transverse momentum {{p}_{{\rm T}}}\gt 320\;{\rm Ge}{\rm V}andpseudorapidity and pseudorapidity |\eta |\lt 1.9,ismeasuredtobe, is measured to be {{\sigma }_{W+Z}}=8.5\pm 1.7$ pb and is compared to next-to-leading-order calculations. The selected events are further used to study jet grooming techniques

    Search for R-parity-violating supersymmetry in events with four or more leptons in sqrt(s) =7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for new phenomena in final states with four or more leptons (electrons or muons) is presented. The analysis is based on 4.7 fb−1 of s=7  TeV \sqrt{s}=7\;\mathrm{TeV} proton-proton collisions delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in two signal regions: one that requires moderate values of missing transverse momentum and another that requires large effective mass. The results are interpreted in a simplified model of R-parity-violating supersymmetry in which a 95% CL exclusion region is set for charged wino masses up to 540 GeV. In an R-parity-violating MSUGRA/CMSSM model, values of m 1/2 up to 820 GeV are excluded for 10 < tan ÎČ < 40

    Search for high-mass resonances decaying to dilepton final states in pp collisions at s√=7 TeV with the ATLAS detector

    Get PDF
    The ATLAS detector at the Large Hadron Collider is used to search for high-mass resonances decaying to an electron-positron pair or a muon-antimuon pair. The search is sensitive to heavy neutral Zâ€Č gauge bosons, Randall-Sundrum gravitons, Z * bosons, techni-mesons, Kaluza-Klein Z/Îł bosons, and bosons predicted by Torsion models. Results are presented based on an analysis of pp collisions at a center-of-mass energy of 7 TeV corresponding to an integrated luminosity of 4.9 fb−1 in the e + e − channel and 5.0 fb−1 in the ÎŒ + ÎŒ −channel. A Z â€Č boson with Standard Model-like couplings is excluded at 95 % confidence level for masses below 2.22 TeV. A Randall-Sundrum graviton with coupling k/MPl=0.1 is excluded at 95 % confidence level for masses below 2.16 TeV. Limits on the other models are also presented, including Technicolor and Minimal Zâ€Č Models
    • 

    corecore