33 research outputs found

    An external ventricular drainage catheter impregnated with rifampicin, trimethoprim and triclosan, with extended activity against MDR Gram-negative bacteria: an in vitro and in vivo study

    Get PDF
    Background: External ventricular drainage (EVD) carries a high risk of ventriculitis, increasingly caused by MDR Gram-negative bacteria such as Escherichia coli and Acinetobacter baumannii. Existing antimicrobial EVD catheters are not effective against these, and we have developed a catheter with activity against MDR bacteria and demonstrated the safety of the new formulation for use in the brain. Objectives: Our aim was to determine the ability of a newly formulated impregnated EVD catheters to withstand challenge with MDR Gram-negative bacteria and to obtain information about its safety for use in the CNS. Methods: Catheters impregnated with three antimicrobials (rifampicin, trimethoprim and triclosan) were challenged in flow conditions at four weekly timepoints with high doses of MDR bacteria, including MRSA and Acinetobacter, and monitored for bacterial colonization. Catheter segments were also inserted intracerebrally into Wistar rats, which were monitored for clinical and behavioural change, and weight loss. Brains were removed after either 1week or 4weeks, and examined for evidence of inflammation and toxicity. Results: Control catheters colonized quickly after the first challenge, while no colonization occurred in the impregnated catheters even after the 4week challenge. Animals receiving the antimicrobial segments behaved normally and gained weight as expected. Neurohistochemistry revealed only surgical trauma and no evidence of neurotoxicity. Conclusions The antimicrobial catheter appears to withstand bacterial challenge for at least 4weeks, suggesting that it might offer protection against infection with MDR Gram-negative bacteria in patients undergoing EVD. It also appears to be safe for use in the CNS

    Bacterial Vaginosis (BV) Candidate Bacteria: Associations with BV and Behavioural Practices in Sexually-Experienced and Inexperienced Women

    Get PDF
    BACKGROUND: In recent years several new fastidious bacteria have been identified that display a high specificity for BV; however no previous studies have comprehensively assessed the behavioural risk associations of these bacterial vaginosis-candidate organisms (BV-COs). METHODS: We examined the associations between 8 key previously described BV-COs and BV status established by Nugent's score (NS). We also examined the sexual practices associated with each BV-CO. We incorporated 2 study populations: 193 from a sexually-inexperienced university population and 146 from a highly sexually-active clinic population. Detailed behavioural data was collected by questionnaire and vaginal smears were scored by the Nugent method. Stored samples were tested by quantitative PCR assays for the 8 BV-COs: Atopobium vaginae, Gardnerella vaginalis, Leptotrichia spp., Megasphaera type I, Sneathia spp., and the Clostridia-like bacteria BVAB1, BVAB2 and BVAB3. Associations between BV-COs and BV and behaviours were examined by univariate and multivariable analyses. RESULTS: On univariate analysis, all BV-COs were more common in BV compared to normal flora. However, only Megasphaera type I, BVAB2, A. vaginae and G. vaginalis were significantly independently associated with BV by multivariable analysis. Six of the eight BV-COs (Megasphaera type I, BVAB2, BVAB3, Sneathia, Leptotrichia and G. vaginalis) were rare or absent in sexually-unexposed women, and demonstrated increasing odds of detection with increasing levels of sexual activity and/or numbers of lifetime sexual partners. Only G. vaginalis and A. vaginae were commonly detected in sexually-unexposed women. Megasphaera type I was independently associated with women-who-have-sex-with women (WSW) and lifetime sexual partner numbers, while unprotected penile-vaginal-sex was associated with BVAB2 detection by multivariate analysis. CONCLUSIONS: Four of eight key BV-COs were significantly associated with BV after adjusting for the presence of other BV-COs. The majority of BV-COs were absent or rare in sexually-unexposed women, and associated with increasing sexual exposure, suggesting potential sexual transmission of BV-COs

    Revealing the sequence and resulting cellular morphology of receptor-ligand interactions during plasmodium falciparum invasion of erythrocytes

    Get PDF
    During blood stage Plasmodium falciparum infection, merozoites invade uninfected erythrocytes via a complex, multistep process involving a series of distinct receptor-ligand binding events. Understanding each element in this process increases the potential to block the parasite's life cycle via drugs or vaccines. To investigate specific receptor-ligand interactions, they were systematically blocked using a combination of genetic deletion, enzymatic receptor cleavage and inhibition of binding via antibodies, peptides and small molecules, and the resulting temporal changes in invasion and morphological effects on erythrocytes were filmed using live cell imaging. Analysis of the videos have shown receptor-ligand interactions occur in the following sequence with the following cellular morphologies; 1) an early heparin-blockable interaction which weakly deforms the erythrocyte, 2) EBA and PfRh ligands which strongly deform the erythrocyte, a process dependant on the merozoite's actin-myosin motor, 3) a PfRh5-basigin binding step which results in a pore or opening between parasite and host through which it appears small molecules and possibly invasion components can flow and 4) an AMA1-RON2 interaction that mediates tight junction formation, which acts as an anchor point for internalization. In addition to enhancing general knowledge of apicomplexan biology, this work provides a rational basis to combine sequentially acting merozoite vaccine candidates in a single multi-receptor-blocking vaccine

    Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015 : a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    Background Improving survival and extending the longevity of life for all populations requires timely, robust evidence on local mortality levels and trends. The Global Burden of Disease 2015 Study (GBD 2015) provides a comprehensive assessment of all-cause and cause-specific mortality for 249 causes in 195 countries and territories from 1980 to 2015. These results informed an in-depth investigation of observed and expected mortality patterns based on sociodemographic measures. Methods We estimated all-cause mortality by age, sex, geography, and year using an improved analytical approach originally developed for GBD 2013 and GBD 2010. Improvements included refinements to the estimation of child and adult mortality and corresponding uncertainty, parameter selection for under-5 mortality synthesis by spatiotemporal Gaussian process regression, and sibling history data processing. We also expanded the database of vital registration, survey, and census data to 14 294 geography-year datapoints. For GBD 2015, eight causes, including Ebola virus disease, were added to the previous GBD cause list for mortality. We used six modelling approaches to assess cause-specific mortality, with the Cause of Death Ensemble Model (CODEm) generating estimates for most causes. We used a series of novel analyses to systematically quantify the drivers of trends in mortality across geographies. First, we assessed observed and expected levels and trends of cause-specific mortality as they relate to the Socio-demographic Index (SDI), a summary indicator derived from measures of income per capita, educational attainment, and fertility. Second, we examined factors affecting total mortality patterns through a series of counterfactual scenarios, testing the magnitude by which population growth, population age structures, and epidemiological changes contributed to shifts in mortality. Finally, we attributed changes in life expectancy to changes in cause of death. We documented each step of the GBD 2015 estimation processes, as well as data sources, in accordance with Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER). Findings Globally, life expectancy from birth increased from 61.7 years (95% uncertainty interval 61.4-61.9) in 1980 to 71.8 years (71.5-72.2) in 2015. Several countries in sub-Saharan Africa had very large gains in life expectancy from 2005 to 2015, rebounding from an era of exceedingly high loss of life due to HIV/AIDS. At the same time, many geographies saw life expectancy stagnate or decline, particularly for men and in countries with rising mortality from war or interpersonal violence. From 2005 to 2015, male life expectancy in Syria dropped by 11.3 years (3.7-17.4), to 62.6 years (56.5-70.2). Total deaths increased by 4.1% (2.6-5.6) from 2005 to 2015, rising to 55.8 million (54.9 million to 56.6 million) in 2015, but age-standardised death rates fell by 17.0% (15.8-18.1) during this time, underscoring changes in population growth and shifts in global age structures. The result was similar for non-communicable diseases (NCDs), with total deaths from these causes increasing by 14.1% (12.6-16.0) to 39.8 million (39.2 million to 40.5 million) in 2015, whereas age-standardised rates decreased by 13.1% (11.9-14.3). Globally, this mortality pattern emerged for several NCDs, including several types of cancer, ischaemic heart disease, cirrhosis, and Alzheimer's disease and other dementias. By contrast, both total deaths and age-standardised death rates due to communicable, maternal, neonatal, and nutritional conditions significantly declined from 2005 to 2015, gains largely attributable to decreases in mortality rates due to HIV/AIDS (42.1%, 39.1-44.6), malaria (43.1%, 34.7-51.8), neonatal preterm birth complications (29.8%, 24.8-34.9), and maternal disorders (29.1%, 19.3-37.1). Progress was slower for several causes, such as lower respiratory infections and nutritional deficiencies, whereas deaths increased for others, including dengue and drug use disorders. Age-standardised death rates due to injuries significantly declined from 2005 to 2015, yet interpersonal violence and war claimed increasingly more lives in some regions, particularly in the Middle East. In 2015, rotaviral enteritis (rotavirus) was the leading cause of under-5 deaths due to diarrhoea (146 000 deaths, 118 000-183 000) and pneumococcal pneumonia was the leading cause of under-5 deaths due to lower respiratory infections (393 000 deaths, 228 000-532 000), although pathogen-specific mortality varied by region. Globally, the effects of population growth, ageing, and changes in age-standardised death rates substantially differed by cause. Our analyses on the expected associations between cause-specific mortality and SDI show the regular shifts in cause of death composition and population age structure with rising SDI. Country patterns of premature mortality (measured as years of life lost [YLLs]) and how they differ from the level expected on the basis of SDI alone revealed distinct but highly heterogeneous patterns by region and country or territory. Ischaemic heart disease, stroke, and diabetes were among the leading causes of YLLs in most regions, but in many cases, intraregional results sharply diverged for ratios of observed and expected YLLs based on SDI. Communicable, maternal, neonatal, and nutritional diseases caused the most YLLs throughout sub-Saharan Africa, with observed YLLs far exceeding expected YLLs for countries in which malaria or HIV/AIDS remained the leading causes of early death. Interpretation At the global scale, age-specific mortality has steadily improved over the past 35 years; this pattern of general progress continued in the past decade. Progress has been faster in most countries than expected on the basis of development measured by the SDI. Against this background of progress, some countries have seen falls in life expectancy, and age-standardised death rates for some causes are increasing. Despite progress in reducing age-standardised death rates, population growth and ageing mean that the number of deaths from most non-communicable causes are increasing in most countries, putting increased demands on health systems. Copyright (C) The Author(s). Published by Elsevier Ltd.Peer reviewe

    Global, regional, and national disability-adjusted life-years (DALYs) for 315 diseases and injuries and healthy life expectancy (HALE), 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015.

    Get PDF
    BACKGROUND: Healthy life expectancy (HALE) and disability-adjusted life-years (DALYs) provide summary measures of health across geographies and time that can inform assessments of epidemiological patterns and health system performance, help to prioritise investments in research and development, and monitor progress toward the Sustainable Development Goals (SDGs). We aimed to provide updated HALE and DALYs for geographies worldwide and evaluate how disease burden changes with development. METHODS: We used results from the Global Burden of Diseases, Injuries, and Risk Factors Study 2015 (GBD 2015) for all-cause mortality, cause-specific mortality, and non-fatal disease burden to derive HALE and DALYs by sex for 195 countries and territories from 1990 to 2015. We calculated DALYs by summing years of life lost (YLLs) and years of life lived with disability (YLDs) for each geography, age group, sex, and year. We estimated HALE using the Sullivan method, which draws from age-specific death rates and YLDs per capita. We then assessed how observed levels of DALYs and HALE differed from expected trends calculated with the Socio-demographic Index (SDI), a composite indicator constructed from measures of income per capita, average years of schooling, and total fertility rate. FINDINGS: Total global DALYs remained largely unchanged from 1990 to 2015, with decreases in communicable, neonatal, maternal, and nutritional (Group 1) disease DALYs offset by increased DALYs due to non-communicable diseases (NCDs). Much of this epidemiological transition was caused by changes in population growth and ageing, but it was accelerated by widespread improvements in SDI that also correlated strongly with the increasing importance of NCDs. Both total DALYs and age-standardised DALY rates due to most Group 1 causes significantly decreased by 2015, and although total burden climbed for the majority of NCDs, age-standardised DALY rates due to NCDs declined. Nonetheless, age-standardised DALY rates due to several high-burden NCDs (including osteoarthritis, drug use disorders, depression, diabetes, congenital birth defects, and skin, oral, and sense organ diseases) either increased or remained unchanged, leading to increases in their relative ranking in many geographies. From 2005 to 2015, HALE at birth increased by an average of 2·9 years (95% uncertainty interval 2·9-3·0) for men and 3·5 years (3·4-3·7) for women, while HALE at age 65 years improved by 0·85 years (0·78-0·92) and 1·2 years (1·1-1·3), respectively. Rising SDI was associated with consistently higher HALE and a somewhat smaller proportion of life spent with functional health loss; however, rising SDI was related to increases in total disability. Many countries and territories in central America and eastern sub-Saharan Africa had increasingly lower rates of disease burden than expected given their SDI. At the same time, a subset of geographies recorded a growing gap between observed and expected levels of DALYs, a trend driven mainly by rising burden due to war, interpersonal violence, and various NCDs. INTERPRETATION: Health is improving globally, but this means more populations are spending more time with functional health loss, an absolute expansion of morbidity. The proportion of life spent in ill health decreases somewhat with increasing SDI, a relative compression of morbidity, which supports continued efforts to elevate personal income, improve education, and limit fertility. Our analysis of DALYs and HALE and their relationship to SDI represents a robust framework on which to benchmark geography-specific health performance and SDG progress. Country-specific drivers of disease burden, particularly for causes with higher-than-expected DALYs, should inform financial and research investments, prevention efforts, health policies, and health system improvement initiatives for all countries along the development continuum. FUNDING: Bill & Melinda Gates Foundation

    Immunity as a predictor of anti-malarial treatment failure: a systematic review

    Get PDF
    Abstract Background Naturally acquired immunity can reduce parasitaemia and potentially influence anti-malarial treatment outcomes; however, evidence for this in the current literature provides conflicted results. The available evidence was synthesized to determine and quantify the association between host immunity and anti-malarial treatment failure. Methods Four databases were searched to identify studies investigating malaria antibody levels in patients receiving anti-malarial treatment for symptomatic malaria with treatment failure recorded according to the World Health Organization classification. Odds ratios or hazard ratios were extracted or calculated to quantify the association between malarial antibody levels and treatment failure, and findings from different studies were visualized using forest plots. Results Eight studies, including patients with falciparum malaria treated with mono- and combination therapy of artemisinin derivatives, sulfadoxine, pyrimethamine and chloroquine, were identified. Reported and calculated effect estimates varied greatly between studies, even those assessing the same antigens and treatments. An association between blood-stage IgG responses and treatment efficacy was observed. The greatest magnitudes of effect were observed for artemisinin [OR/HR (95% CI) range 0.02 (0.00, 0.45)–1.08 (0.57, 2.06)] and chloroquine [0.24 (0.04, 1.37)–0.32 (0.05, 1.96)] treatments, and larger magnitudes of effect were observed for variant surface antigen responses [0.02 (0.00, 0.45)–1.92 (0.94, 3.91)] when compared with merozoite specific responses [0.24 (0.04, 1.37)–2.83 (1.13, 7.09)]. Conclusions Naturally acquired malarial immunity is associated with reduced anti-malarial treatment failure in malaria endemic populations. Anti-malarial IgG effects treatment outcome differently for different anti-malarial drugs and antigen targets, and had the greatest impact during treatment with the current first-line treatments, the artemisinins. This has implications for the assessment of the therapeutic efficacy of anti-malarials, particularly in the context of emerging artemisinin resistance

    MOESM1 of Immunity as a predictor of anti-malarial treatment failure: a systematic review

    No full text
    Additional file 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Statement

    Quantification of the dynamics of antibody response to malaria to inform sero-surveillance in pregnant women

    No full text
    Background Malaria remains a major public health threat and tools sensitive to detect infections in low malaria transmission areas are needed to progress elimination efforts. Pregnant women are particularly vulnerable to malaria infections. Throughout pregnancy they access routine antenatal care, presenting a unique sentinel population to apply novel sero-surveillance tools to measure malaria transmission. The aim of this study was to quantify the dynamic antibody responses to multiple antigens during pregnancy so as to identify a single or multiple antibody response of exposure to malaria in pregnancy. Methods This study involved a secondary analysis of antibody responses to six parasite antigens [five commonly studied merozoite antigens and the variant surface antigen 2-chondroitin sulphate A (VAR2CSA), a pregnancy-specific erythrocytic antigen] measured by enzyme-linked immunosorbent assay (ELISA) over the gestation period until delivery (median of 7 measurements/woman) in 250 pregnant women who attended antenatal clinics located at the Thai-Myanmar border. A multivariate mixture linear mixed model was used to cluster the pregnant women into groups that have similar longitudinal antibody responses to all six antigens over the gestational period using a Bayesian approach. The variable-specific entropy was calculated to identify the antibody responses that have the highest influence on the classification of the women into clusters, and subsequent agreement with grouping of women based on exposure to malaria during pregnancy. Results Of the 250 pregnant women, 135 had a Plasmodium infection detected by light microscopy during pregnancy (39% Plasmodium falciparum only, 33% Plasmodium vivax only and 28% mixed/other species), defined as cases. The antibody responses to all six antigens accurately identified the women who did not have a malaria infection detected during pregnancy (93%, 107/115 controls). Antibody responses to P. falciparum merozoite surface protein 3 (PfMSP3) and P. vivax apical membrane antigen 1 (PvAMA1) were the least dynamic. Antibody responses to the antigens P. falciparum apical membrane antigen 1 (PfAMA1) and PfVAR2CSA were able to identify the majority of the cases more accurately (63%, 85/135). Conclusion These findings suggest that the combination of antibodies, PfAMA1 and PfVAR2CSA, may be useful for sero-surveillance of malaria infections in pregnant women, particularly in low malaria transmission settings. Further investigation of other antibody markers is warranted considering these antibodies combined only detected 63% of the malaria infections during pregnancy
    corecore