75 research outputs found

    Systematic whole-genome sequencing reveals an unexpected diversity among actinomycetoma pathogens and provides insights into their antibacterial susceptibilities

    Get PDF
    Mycetoma is a neglected tropical chronic granulomatous inflammatory disease of the skin and subcutaneous tissues. More than 70 species with a broad taxonomic diversity have been implicated as agents of mycetoma. Understanding the full range of causative organisms and their antibiotic sensitivity profiles are essential for the appropriate treatment of infections. The present study focuses on the analysis of full genome sequences and antibiotic inhibitory concentration profiles of actinomycetoma strains from patients seen at the Mycetoma Research Centre in Sudan with a view to developing rapid diagnostic tests. Seventeen pathogenic isolates obtained by surgical biopsies were sequenced using MinION and Illumina methods, and their antibiotic inhibitory concentration profiles determined. The results highlight an unexpected diversity of actinomycetoma causing pathogens, including three Streptomyces isolates assigned to species not previously associated with human actinomycetoma and one new Streptomyces species. Thus, current approaches for clinical and histopathological classification of mycetoma may need to be updated. The standard treatment for actinomycetoma is a combination of sulfamethoxazole/trimethoprim and amoxicillin/clavulanic acid. Most tested isolates had a high IC (inhibitory concentration) to sulfamethoxazole/trimethoprim or to amoxicillin alone. However, the addition of the β-lactamase inhibitor clavulanic acid to amoxicillin increased susceptibility, particularly for Streptomyces somaliensis and Streptomyces sudanensis. Actinomadura madurae isolates appear to have a particularly high IC under laboratory conditions, suggesting that alternative agents, such as amikacin, could be considered for more effective treatment. The results obtained will inform future diagnostic methods for the identification of actinomycetoma and treatment

    Structural pathways for ultrafast melting of optically excited thin polycrystalline Palladium films

    Full text link
    Due to its extremely short timescale, the non-equilibrium melting of metals is exceptionally difficult to probe experimentally. The knowledge of melting mechanisms is thus based mainly on the results of theoretical predictions. This work reports on the investigation of ultrafast melting of thin polycrystalline Pd films studied by optical laser pump - X-ray free-electron laser probe experiments and molecular-dynamics simulations. By acquiring X-ray diffraction snapshots with sub-picosecond resolution, we capture the sample's atomic structure during its transition from the crystalline to the liquid state. Bridging the timescales of experiments and simulations allows us to formulate a realistic microscopic picture of melting. We demonstrate that the existing models of strongly non-equilibrium melting, developed for systems with relatively weak electron-phonon coupling, remain valid even for ultrafast heating rates achieved in femtosecond laser-excited Pd. Furthermore, we highlight the role of pre-existing and transiently generated crystal defects in the transition to the liquid state.Comment: main manuscript 33 pages, 9 figures; supplemental material 19 pages, 13 figures - all in one fil

    Negative emotional responses elicited by the anticipation of pain in others: Psychophysiological evidence

    Get PDF
    Limited evidence is available about factors influencing observers' anticipatory emotional responses to another's pain. We investigated fear and distress towards the threat of pain in others, and the moderating role of observers' psychopathic traits and catastrophizing about their own or others' pain. Thirty-six dyads of healthy participants were randomly assigned to either the role of observer or observed participant. Both participants were instructed that 1 colored slide (blue or yellow) signalled that a pain stimulus could possibly be delivered to the observed participant (=pain signal), whereas no pain stimulus would be delivered when a differently colored slide was presented (=safety signal). Observers' self-reported fear, fear-potentiated startle, and corrugator electromyography activity during pain and safety signals were measured. Furthermore, observers rated the presence of pain after each trial allowing assessment of observers' perceptual sensitivity to others' pain. Results indicated that self-reported fear, fear-potentiated startle, and corrugator electromyography activity were augmented during pain signals compared to safety signals. Moreover, these negative emotional responses were heightened in observers highly catastrophizing about others' pain, but reduced in observers with heightened psychopathic traits. Psychopathic traits were also related with a diminished perceptual sensitivity to others' pain. The results are discussed in light of affective-motivational perspectives on pain. Perspective: This study investigated observers' negative emotional responses in anticipation of pain in another, and the moderating role of observers' psychopathic traits and pain catastrophizing. Knowledge about characteristics influencing observers' emotional response to others' pain may provide insight into why observers engage in particular behaviors when faced with another in pain. © 2012 by the American Pain Society

    What Electrophysiology Tells Us About Alzheimer’s Disease::A Window into the Synchronization and Connectivity of Brain Neurons

    Get PDF
    Electrophysiology provides a real-time readout of neural functions and network capability in different brain states, on temporal (fractions of milliseconds) and spatial (micro, meso, and macro) scales unmet by other methodologies. However, current international guidelines do not endorse the use of electroencephalographic (EEG)/magnetoencephalographic (MEG) biomarkers in clinical trials performed in patients with Alzheimer’s disease (AD), despite a surge in recent validated evidence. This Position Paper of the ISTAART Electrophysiology Professional Interest Area endorses consolidated and translational electrophysiological techniques applied to both experimental animal models of AD and patients, to probe the effects of AD neuropathology (i.e., brain amyloidosis, tauopathy, and neurodegeneration) on neurophysiological mechanisms underpinning neural excitation/inhibition and neurotransmission as well as brain network dynamics, synchronization, and functional connectivity reflecting thalamocortical and cortico-cortical residual capacity. Converging evidence shows relationships between abnormalities in EEG/MEG markers and cognitive deficits in groups of AD patients at different disease stages. The supporting evidence for the application of electrophysiology in AD clinical research as well as drug discovery pathways warrants an international initiative to include the use of EEG/MEG biomarkers in the main multicentric projects planned in AD patients, to produce conclusive findings challenging the present regulatory requirements and guidelines for AD studies

    Combined point of care nucleic acid and antibody testing for SARS-CoV-2 following emergence of D614G Spike Variant

    Get PDF
    Rapid COVID-19 diagnosis in hospital is essential, though complicated by 30-50% of nose/throat swabs being negative by SARS-CoV-2 nucleic acid amplification testing (NAAT). Furthermore, the D614G spike mutant now dominates the pandemic and it is unclear how serological tests designed to detect anti-Spike antibodies perform against this variant. We assess the diagnostic accuracy of combined rapid antibody point of care (POC) and nucleic acid assays for suspected COVID-19 disease due to either wild type or the D614G spike mutant SARS-CoV-2. The overall detection rate for COVID-19 is 79.2% (95CI 57.8-92.9%) by rapid NAAT alone. Combined point of care antibody test and rapid NAAT is not impacted by D614G and results in very high sensitivity for COVID-19 diagnosis with very high specificity

    Associations between depressive symptoms and disease progression in older patients with chronic kidney disease: results of the EQUAL study

    Get PDF
    Background Depressive symptoms are associated with adverse clinical outcomes in patients with end-stage kidney disease; however, few small studies have examined this association in patients with earlier phases of chronic kidney disease (CKD). We studied associations between baseline depressive symptoms and clinical outcomes in older patients with advanced CKD and examined whether these associations differed depending on sex. Methods CKD patients (>= 65 years; estimated glomerular filtration rate <= 20 mL/min/1.73 m(2)) were included from a European multicentre prospective cohort between 2012 and 2019. Depressive symptoms were measured by the five-item Mental Health Inventory (cut-off <= 70; 0-100 scale). Cox proportional hazard analysis was used to study associations between depressive symptoms and time to dialysis initiation, all-cause mortality and these outcomes combined. A joint model was used to study the association between depressive symptoms and kidney function over time. Analyses were adjusted for potential baseline confounders. Results Overall kidney function decline in 1326 patients was -0.12 mL/min/1.73 m(2)/month. A total of 515 patients showed depressive symptoms. No significant association was found between depressive symptoms and kidney function over time (P = 0.08). Unlike women, men with depressive symptoms had an increased mortality rate compared with those without symptoms [adjusted hazard ratio 1.41 (95% confidence interval 1.03-1.93)]. Depressive symptoms were not significantly associated with a higher hazard of dialysis initiation, or with the combined outcome (i.e. dialysis initiation and all-cause mortality). Conclusions There was no significant association between depressive symptoms at baseline and decline in kidney function over time in older patients with advanced CKD. Depressive symptoms at baseline were associated with a higher mortality rate in men

    A Roadmap for HEP Software and Computing R&D for the 2020s

    Get PDF
    Particle physics has an ambitious and broad experimental programme for the coming decades. This programme requires large investments in detector hardware, either to build new facilities and experiments, or to upgrade existing ones. Similarly, it requires commensurate investment in the R&D of software to acquire, manage, process, and analyse the shear amounts of data to be recorded. In planning for the HL-LHC in particular, it is critical that all of the collaborating stakeholders agree on the software goals and priorities, and that the efforts complement each other. In this spirit, this white paper describes the R&D activities required to prepare for this software upgrade.Peer reviewe

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice
    corecore