323 research outputs found

    Functional neurophysiological biomarkers of early-stage Alzheimer's disease:A perspective of network hyperexcitability in disease progression

    Get PDF
    Network hyperexcitability (NH) has recently been suggested as a potential neurophysiological biomarker of Alzheimer's disease (AD), as new, more accurate biomarkers of AD are sought. NH has generated interest as a potential biomarker of certain stages in the disease trajectory and even as a disease mechanism by which network dysfunction could be modulated. NH has been demonstrated in several animal models of AD pathology and multiple lines of evidence point to the existence of NH in patients with AD, strongly supporting the physiological and clinical relevance of this indication. Several hypotheses have been put forward to explain the prevalence of NH in animal models through neurophysiological, biochemical, and imaging techniques. However, some of these hypotheses have been built on animal models with limitations and caveats that may have derived NH through other mechanisms or mechanisms without translational validity to sporadic AD patients, potentially leading to an erroneous conclusion of the underlying cause of NH occurring in patients with AD. In this review, we discuss the substantiation for NH in animal models of AD pathology and in human patients, as well as some of the hypotheses considering recently developed animal models that challenge existing hypotheses and mechanisms of NH. In addition, we provide a preclinical perspective on how the development of animal models incorporating AD-specific NH could provide physiologically relevant translational experimental data that may potentially aid the discovery and development of novel therapies for AD

    Van alle markten thuis

    Get PDF

    On-going frontal alpha rhythms are dominant in passive state and desynchronize in active state in adult gray mouse lemurs

    Get PDF
    The gray mouse lemur (Microcebus murinus) is considered a useful primate model for translational research. In the framework of IMI PharmaCog project (Grant Agreement n°115009, www.pharmacog.org), we tested the hypothesis that spectral electroencephalographic (EEG) markers of motor and locomotor activity in gray mouse lemurs reflect typical movement-related desynchronization of alpha rhythms (about 8-12 Hz) in humans. To this aim, EEG (bipolar electrodes in frontal cortex) and electromyographic (EMG; bipolar electrodes sutured in neck muscles) data were recorded in 13 male adult (about 3 years) lemurs. Artifact-free EEG segments during active state (gross movements, exploratory movements or locomotor activity) and awake passive state (no sleep) were selected on the basis of instrumental measures of animal behavior, and were used as an input for EEG power density analysis. Results showed a clear peak of EEG power density at alpha range (7-9 Hz) during passive state. During active state, there was a reduction in alpha power density (8-12 Hz) and an increase of power density at slow frequencies (1-4 Hz). Relative EMG activity was related to EEG power density at 2-4 Hz (positive correlation) and at 8-12 Hz (negative correlation). These results suggest for the first time that the primate gray mouse lemurs and humans may share basic neurophysiologic mechanisms of synchronization of frontal alpha rhythms in awake passive state and their desynchronization during motor and locomotor activity. These EEG markers may be an ideal experimental model for translational basic (motor science) and applied (pharmacological and non-pharmacological interventions) research in Neurophysiology

    Verifica dell'efficienza informativa del mercato. Metodologia dell'Event Study.

    Get PDF
    I mercati finanziari sono contraddistinti da una grande volatilità dei titoli quotati e scambiati. Questa volatilità la maggior parte delle volte deriva dell’andamento generale del mercato stesso, in altri casi, invece, scaturisce da fattori particolari che agiscono unicamente sul prezzo del singolo titolo. Lo scopo di tale lavoro è quello di comprendere se il mercato finanziario in esame, è un mercato efficiente in senso informativo, cioè se incorpora nel prezzo dei singoli titoli tutte le informazioni definite rilevanti che concernono questi ultimi. Nel corso dell’elaborato, verrà analizzato quale trend ci si attende da un titolo o quale evoluzione ha già avuto il titolo stesso in risposta ad un evento o ad una notizia price sensitive. Questi appena delineati, sono i fini che ci si prefigge di raggiungere nel momento in cui si decide di intraprendere un event study in finanza. Si tratta quindi di cercare una metodologia che consenta di comprendere queste reazioni dei prezzi; questo metodo è proprio l’Event Studies (ES). L’analisi quantitativa richiederà un’analisi storico-istituzionale del ciclo finanziario internazionale e una attenzione per le Unexpected News (UN), per misurarne l’impatto in una event window. Diversi sono i modelli di riferimento, e diverse sono le tecniche econometriche presenti nella letteratura sulla materia e utilizzate per l’analisi inferenziale. Saranno presentati modelli statici come il market model, ritenuto da molti studiosi, il modello che assicura le migliori performance e metodologie statistico-econometriche come il modello classico di regressione lineare (OLS) che assicura dei buoni risultati. Dopo la stima dei rendimenti mediante tale approccio, sarà svolta un’analisi di quelli direttamente imputabili all’evento considerato e che non rientrano nel normale andamento del titolo (Abnormal Returns). Su questi rendimenti anomali verranno poi condotti test statistici per la verifica della loro significatività

    The effects of social environment on AD-related pathology in hAPP-J20 mice and tau-P301L mice

    Get PDF
    In humans, social factors (e.g., loneliness) have been linked to the risk of developing Alzheimer's Disease (AD). To date, AD pathology is primarily characterized by amyloid-β plaques and tau tangles. We aimed to assess the effect of single- and group-housing on AD-related pathology in a mouse model for amyloid pathology (J20, and WT controls) and a mouse model for tau pathology (P301L) with and without seeding of synthetic human tau fragments (K18). Female mice were either single housed (SH) or group housed (GH) from the age of 6-7 weeks onwards. In 12-week-old P301L mice, tau pathology was induced through seeding by injecting K18 into the dorsal hippocampus (P301L K18), while control mice received a PBS injection (P301L PBS). P301L mice were sacrificed at 4 months of age and J20 mice at 10 months of age. In all mice brain pathology was histologically assessed by examining microglia, the CA1 pyramidal cell layer and specific AD pathology: analysis of plaques in J20 mice and tau hyperphosphorylation in P301L mice. Contrary to our expectation, SH-J20 mice interestingly displayed fewer plaques in the hippocampus compared to GH-J20 mice. However, housing did not affect tau hyperphosphorylation at Ser202/Thr205 of P301L mice, nor neuronal cell death in the CA1 region in any of the mice. The number of microglia was increased by the J20 genotype, and their activation (based on cell body to cell size ratio) in the CA1 was affected by genotype and housing condition (interaction effect). Single housing of P301L mice was linked to the development of stereotypic behavior (i.e. somersaulting and circling behavior). In P301L K18 mice, an increased number of microglia were observed, among which were rod microglia. Taken together, our findings point to a significant effect of social housing conditions on amyloid plaques and microglia in J20 mice and on the development of stereotypic behavior in P301L mice, indicating that the social environment can modulate AD-related pathology. </p

    Neurophysiological effects of human-derived pathological tau conformers in the APPKM670/671NL.PS1/L166P amyloid mouse model of Alzheimer's disease

    Get PDF
    Alzheimer's Disease (AD) is a neurodegenerative disease characterized by two main pathological hallmarks: amyloid plaques and intracellular tau neurofibrillary tangles. However, a majority of studies focus on the individual pathologies and seldom on the interaction between the two pathologies. Herein, we present the longitudinal neuropathological and neurophysiological effects of a combined amyloid-tau model by hippocampal seeding of human-derived tau pathology in the APP.PS1/L166P amyloid animal model. We statistically assessed both neurophysiological and pathological changes using linear mixed modelling to determine if factors such as the age at which animals were seeded, genotype, seeding or buffer, brain region where pathology was quantified, and time-post injection differentially affect these outcomes. We report that AT8-positive tau pathology progressively develops and is facilitated by the amount of amyloid pathology present at the time of injection. The amount of AT8-positive tau pathology was influenced by the interaction of age at which the animal was injected, genotype, and time after injection. Baseline pathology-related power spectra and Higuchi Fractal Dimension (HFD) score alterations were noted in APP.PS1/L166P before any manipulations were performed, indicating a baseline difference associated with genotype. We also report immediate localized hippocampal dysfunction in the electroencephalography (EEG) power spectra associated with tau seeding which returned to comparable levels at 1 month-post-injection. Longitudinal effects of seeding indicated that tau-seeded wild-type mice showed an increase in gamma power earlier than buffer control comparisons which was influenced by the age at which the animal was injected. A reduction of hippocampal broadband power spectra was noted in tau-seeded wild-type mice, but absent in APP.PS1 animals. HFD scores appeared to detect subtle effects associated with tau seeding in APP.PS1 animals, which was differentially influenced by genotype. Notably, while tau histopathological changes were present, a lack of overt longitudinal electrophysiological alterations was noted, particularly in APP.PS1 animals that feature both pathologies after seeding, reiterating and underscoring the difficulty and complexity associated with elucidating physiologically relevant and translatable biomarkers of Alzheimer's Disease at the early stages of the disease

    Guidelines for the recording and evaluation of pharmaco-EEG data in man: the International Pharmaco-EEG Society (IPEG)

    Get PDF
    The International Pharmaco-EEG Society (IPEG) presents updated guidelines summarising the requirements for the recording and computerised evaluation of pharmaco-EEG data in man. Since the publication of the first pharmaco-EEG guidelines in 1982, technical and data processing methods have advanced steadily, thus enhancing data quality and expanding the palette of tools available to investigate the action of drugs on the central nervous system (CNS), determine the pharmacokinetic and pharmacodynamic properties of novel therapeutics and evaluate the CNS penetration or toxicity of compounds. However, a review of the literature reveals inconsistent operating procedures from one study to another. While this fact does not invalidate results per se, the lack of standardisation constitutes a regrettable shortcoming, especially in the context of drug development programmes. Moreover, this shortcoming hampers reliable comparisons between outcomes of studies from different laboratories and hence also prevents pooling of data which is a requirement for sufficiently powering the validation of novel analytical algorithms and EEG-based biomarkers. The present updated guidelines reflect the consensus of a global panel of EEG experts and are intended to assist investigators using pharmaco-EEG in clinical research, by providing clear and concise recommendations and thereby enabling standardisation of methodology and facilitating comparability of data across laboratories

    Neural oscillations during cognitive processes in an <i>App</i> knock-in mouse model of Alzheimer's disease pathology

    Get PDF
    Multiple animal models have been created to gain insight into Alzheimer's disease (AD) pathology. Among the most commonly used models are transgenic mice overexpressing human amyloid precursor protein (APP) with mutations linked to familial AD, resulting in the formation of amyloid beta plaques, one of the pathological hallmarks observed in AD patients. However, recent evidence suggests that the overexpression of APP by itself can confound some of the reported observations. Therefore, we investigated in the present study the App(NL-G-F)model, an App knock-in (App-KI) mouse model that develops amyloidosis in the absence of APP-overexpression. Our findings at the behavioral, electrophysiological, and histopathological level confirmed an age-dependent increase in A beta 1-42 levels and plaque deposition in these mice in accordance with previous reports. This had apparently no consequences on cognitive performance in a visual discrimination (VD) task, which was largely unaffected in App(NL-G-F) mice at the ages tested. Additionally, we investigated neurophysiological functioning of several brain areas by phase-amplitude coupling (PAC) analysis, a measure associated with adequate cognitive functioning, during the VD task (starting at 4.5 months) and the exploration of home environment (at 5 and 8 months of age). While we did not detect age-dependent changes in PAC during home environment exploration for both the wild-type and the App(NL-G-F) mice, we did observe subtle changes in PAC in the wild-type mice that were not present in the App(NL-G-F) mice

    Discovery and Kinetic Profiling of 7-Aryl-1,2,4-triazolo[4,3-a]pyridines: Positive Allosteric Modulators of the Metabotropic Glutamate Receptor 2

    Get PDF
    We report the synthesis and biological evaluation of a series of 7-aryl-1,2,4-triazolo[4,3-c]pyridines with mGlu(2) positive allosteric modulator (PAM) activity and affinity. Besides traditional in vitro parameters of potency and affinity, kinetic parameters k(on), k(off) and residence time (RT) were determined. The PAMs showed various kinetic profiles; k(on) values ranged over 2 orders of magnitude, whereas RT values were within a 10-fold range. Association rate constant k(on) was linearly correlated to affinity. Evaluation of a short, medium, and long RT compound in a label-free assay indicated a correlation between RT and functional effect. The effects of long RT compound 9 on sleep-wake states indicated long RT was translated into sustained inhibition of rapid eye movement (REM) in vivo. These results show that affinity-only driven selection would have resulted in mGlu(2) PAMs with high values for k(on) but not necessarily optimized RT, which is key to predicting optimal efficacy in vivo

    Chronic BACE-1 Inhibitor Administration in TASTPM Mice (APP KM670/671NL and PSEN1 M146V Mutation): An EEG Study

    Get PDF
    Objective: In this exploratory study, we tested whether electroencephalographic (EEG) rhythms may reflect the effects of a chronic administration (4 weeks) of an anti-amyloid β-site amyloid precursor protein (APP) cleaving enzyme 1 inhibitor (BACE-1; ER-901356; Eisai Co., Ltd., Tokyo, Japan) in TASTPM (double mutation in APP KM670/671NL and PSEN1 M146V) producing Alzheimer's disease (AD) amyloid neuropathology as compared to wild type (WT) mice. Methods: Ongoing EEG rhythms were recorded from a bipolar frontoparietal and two monopolar frontomedial (prelimbic) and hippocampal channels in 11 WT Vehicle, 10 WT BACE-1, 10 TASTPM Vehicle, and 11 TASTPM BACE-1 mice (males; aged 8/9 months old at the beginning of treatment). Normalized EEG power (density) was compared between the first day (Day 0) and after 4 weeks (Week 4) of the BACE-1 inhibitor (10 mg/Kg) or vehicle administration in the 4 mouse groups. Frequency and magnitude of individual EEG delta and theta frequency peaks (IDF and ITF) were considered during animal conditions of behaviorally passive and active wakefulness. Cognitive status was not tested. Results: Compared with the WT group, the TASTPM group generally showed a significantly lower reactivity in frontoparietal ITF power during the active over the passive condition (p &lt; 0.05). Notably, there was no other statistically significant effect (e.g., additional electrodes, recording time, and BACE-1 inhibitor). Conclusions: The above EEG biomarkers reflected differences between the WT and TASTPM groups, but no BACE-1 inhibitor effect. The results suggest an enhanced experimental design with the use of younger mice, longer drug administrations, an effective control drug, and neuropathological amyloid markers
    • …
    corecore