163 research outputs found

    The making of India's COVID-19 disaster: A Disaster Risk Management (DRM) Assemblage analysis

    Get PDF
    This article analyses the suite of policies and measures enacted by the Indian Union Government in response to the COVID-19 pandemic through apparatuses of disaster management. We focus on the period from the onset of the pandemic in early 2020, until mid-2021. This holistic review adopts a Disaster Risk Management (DRM) Assemblage conceptual approach to make sense of how the COVID-19 disaster was made possible and importantly how it was responded to, managed, exacerbated, and experienced as it continued to emerge. This approach is grounded in literature from critical disaster studies and geography. The analysis also draws on a wide range of other disciplines, ranging from epidemiology to anthropology and political science, as well as grey literature, newspaper reports, and official policy documents. The article is structured into three sections that investigate in turn and at different junctures the role of governmentality and disaster politics; scientific knowledge and expert advice, and socially and spatially differentiated disaster vulnerabilities in shaping the COVID-19 disaster in India. We put forward two main arguments on the basis of the literature reviewed. One is that both the impacts of the virus spread and the lockdown-responses to it affected already marginalised groups disproportionately. The other is that managing the COVID-19 pandemic through disaster management assemblage/apparatuses served to extend centralised executive authority in India. These two processes are demonstrated to be continuations of pre-pandemic trends. We conclude that evidence of a paradigm shift in India's approach to disaster management remains thin on the ground

    Increases in Retrograde Injury Signaling Complex-Related Transcripts in Central Axons following Injury

    Get PDF
    Axons in the peripheral nervous system respond to injury by activating retrograde injury signaling (RIS) pathways, which promote local axonal protein synthesis (LPS) and neuronal regeneration. RIS is also initiated following injury of neurons in the central nervous system (CNS). However, regulation of the localization of axonal mRNA required for LPS is not well understood. We used a hippocampal explant system to probe the regulation of axonal levels of RIS-associated transcripts following axonal injury. Axonal levels of importin β1 and RanBP1 were elevated biphasically at 1 and 24 hrs after axotomy. Transcript levels for β-actin, a prototypic axonally synthesized protein, were similarly elevated. Our data suggest differential regulation of axonal transcripts. At 1 hr after injury, deployment of actinomycin revealed that RanBP1, but not importin β1, requires de novo mRNA synthesis. At 24 hrs after injury, use of importazole revealed that the second wave of increased axonal mRNA levels required importin β-mediated nuclear import. We also observed increased importin β1 axonal protein levels at 1 and 6 hrs after injury. RanBP1 levels and vimentin levels fluctuated but were unchanged at 3 and 6 hrs after injury. This study revealed temporally complex regulation of axonal transcript levels, and it has implications for understanding neuronal response to injury in the CNS

    A Locus on Chromosome 5 Is Associated with Dilated Cardiomyopathy in Doberman Pinschers

    Get PDF
    Dilated cardiomyopathy (DCM) is a heterogeneous group of heart diseases with a strong genetic background. Currently, many human DCM cases exist where no causative mutation can be identified. DCM also occurs with high prevalence in several large dog breeds. In the Doberman Pinscher a specific DCM form characterized by arrhythmias and/or echocardiographic changes has been intensively studied by veterinary cardiologists. We performed a genome-wide association study in Doberman Pinschers. Using 71 cases and 70 controls collected in Germany we identified a genome-wide significant association to DCM on chromosome 5. We validated the association in an independent cohort collected in the United Kingdom. There is no known DCM candidate gene under the association signal. Therefore, DCM in Doberman Pinschers offers the chance of identifying a novel DCM gene that might also be relevant for human health

    Health Benefits of Nut Consumption

    Get PDF
    Nuts (tree nuts and peanuts) are nutrient dense foods with complex matrices rich in unsaturated fatty and other bioactive compounds: high-quality vegetable protein, fiber, minerals, tocopherols, phytosterols, and phenolic compounds. By virtue of their unique composition, nuts are likely to beneficially impact health outcomes. Epidemiologic studies have associated nut consumption with a reduced incidence of coronary heart disease and gallstones in both genders and diabetes in women. Limited evidence also suggests beneficial effects on hypertension, cancer, and inflammation. Interventional studies consistently show that nut intake has a cholesterol-lowering effect, even in the context of healthy diets, and there is emerging evidence of beneficial effects on oxidative stress, inflammation, and vascular reactivity. Blood pressure, visceral adiposity and the metabolic syndrome also appear to be positively influenced by nut consumption. Thus it is clear that nuts have a beneficial impact on many cardiovascular risk factors. Contrary to expectations, epidemiologic studies and clinical trials suggest that regular nut consumption is unlikely to contribute to obesity and may even help in weight loss. Safety concerns are limited to the infrequent occurrence of nut allergy in children. In conclusion, nuts are nutrient rich foods with wide-ranging cardiovascular and metabolic benefits, which can be readily incorporated into healthy diets

    Identification and Clonal Characterisation of a Progenitor Cell Sub-Population in Normal Human Articular Cartilage

    Get PDF
    Background: Articular cartilage displays a poor repair capacity. The aim of cell-based therapies for cartilage defects is to repair damaged joint surfaces with a functional replacement tissue. Currently, chondrocytes removed from a healthy region of the cartilage are used but they are unable to retain their phenotype in expanded culture. The resulting repair tissue is fibrocartilaginous rather than hyaline, potentially compromising long-term repair. Mesenchymal stem cells, particularly bone marrow stromal cells (BMSC), are of interest for cartilage repair due to their inherent replicative potential. However, chondrocyte differentiated BMSCs display an endochondral phenotype, that is, can terminally differentiate and form a calcified matrix, leading to failure in long-term defect repair. Here, we investigate the isolation and characterisation of a human cartilage progenitor population that is resident within permanent adult articular cartilage. Methods and Findings: Human articular cartilage samples were digested and clonal populations isolated using a differential adhesion assay to fibronectin. Clonal cell lines were expanded in growth media to high population doublings and karyotype analysis performed. We present data to show that this cell population demonstrates a restricted differential potential during chondrogenic induction in a 3D pellet culture system. Furthermore, evidence of high telomerase activity and maintenance of telomere length, characteristic of a mesenchymal stem cell population, were observed in this clonal cell population. Lastly, as proof of principle, we carried out a pilot repair study in a goat in vivo model demonstrating the ability of goat cartilage progenitors to form a cartilage-like repair tissue in a chondral defect. Conclusions: In conclusion, we propose that we have identified and characterised a novel cartilage progenitor population resident in human articular cartilage which will greatly benefit future cell-based cartilage repair therapies due to its ability to maintain chondrogenicity upon extensive expansion unlike full-depth chondrocytes that lose this ability at only seven population doublings

    A prospective prostate cancer screening programme for men with pathogenic variants in mismatch repair genes (IMPACT): initial results from an international prospective study.

    Get PDF
    Funder: Victorian Cancer AgencyFunder: NIHR Manchester Biomedical Research CentreFunder: Cancer Research UKFunder: Cancer Council TasmaniaFunder: Instituto de Salud Carlos IIIFunder: Cancer AustraliaFunder: NIHR Oxford Biomedical Research CentreFunder: Fundación Científica de la Asociación Española Contra el CáncerFunder: Cancer Council South AustraliaFunder: Swedish Cancer SocietyFunder: NIHR Cambridge Biomedical Research CentreFunder: Institut Català de la SalutFunder: Cancer Council VictoriaFunder: Prostate Cancer Foundation of AustraliaFunder: National Institutes of HealthBACKGROUND: Lynch syndrome is a rare familial cancer syndrome caused by pathogenic variants in the mismatch repair genes MLH1, MSH2, MSH6, or PMS2, that cause predisposition to various cancers, predominantly colorectal and endometrial cancer. Data are emerging that pathogenic variants in mismatch repair genes increase the risk of early-onset aggressive prostate cancer. The IMPACT study is prospectively assessing prostate-specific antigen (PSA) screening in men with germline mismatch repair pathogenic variants. Here, we report the usefulness of PSA screening, prostate cancer incidence, and tumour characteristics after the first screening round in men with and without these germline pathogenic variants. METHODS: The IMPACT study is an international, prospective study. Men aged 40-69 years without a previous prostate cancer diagnosis and with a known germline pathogenic variant in the MLH1, MSH2, or MSH6 gene, and age-matched male controls who tested negative for a familial pathogenic variant in these genes were recruited from 34 genetic and urology clinics in eight countries, and underwent a baseline PSA screening. Men who had a PSA level higher than 3·0 ng/mL were offered a transrectal, ultrasound-guided, prostate biopsy and a histopathological analysis was done. All participants are undergoing a minimum of 5 years' annual screening. The primary endpoint was to determine the incidence, stage, and pathology of screening-detected prostate cancer in carriers of pathogenic variants compared with non-carrier controls. We used Fisher's exact test to compare the number of cases, cancer incidence, and positive predictive values of the PSA cutoff and biopsy between carriers and non-carriers and the differences between disease types (ie, cancer vs no cancer, clinically significant cancer vs no cancer). We assessed screening outcomes and tumour characteristics by pathogenic variant status. Here we present results from the first round of PSA screening in the IMPACT study. This study is registered with ClinicalTrials.gov, NCT00261456, and is now closed to accrual. FINDINGS: Between Sept 28, 2012, and March 1, 2020, 828 men were recruited (644 carriers of mismatch repair pathogenic variants [204 carriers of MLH1, 305 carriers of MSH2, and 135 carriers of MSH6] and 184 non-carrier controls [65 non-carriers of MLH1, 76 non-carriers of MSH2, and 43 non-carriers of MSH6]), and in order to boost the sample size for the non-carrier control groups, we randomly selected 134 non-carriers from the BRCA1 and BRCA2 cohort of the IMPACT study, who were included in all three non-carrier cohorts. Men were predominantly of European ancestry (899 [93%] of 953 with available data), with a mean age of 52·8 years (SD 8·3). Within the first screening round, 56 (6%) men had a PSA concentration of more than 3·0 ng/mL and 35 (4%) biopsies were done. The overall incidence of prostate cancer was 1·9% (18 of 962; 95% CI 1·1-2·9). The incidence among MSH2 carriers was 4·3% (13 of 305; 95% CI 2·3-7·2), MSH2 non-carrier controls was 0·5% (one of 210; 0·0-2·6), MSH6 carriers was 3·0% (four of 135; 0·8-7·4), and none were detected among the MLH1 carriers, MLH1 non-carrier controls, and MSH6 non-carrier controls. Prostate cancer incidence, using a PSA threshold of higher than 3·0 ng/mL, was higher in MSH2 carriers than in MSH2 non-carrier controls (4·3% vs 0·5%; p=0·011) and MSH6 carriers than MSH6 non-carrier controls (3·0% vs 0%; p=0·034). The overall positive predictive value of biopsy using a PSA threshold of 3·0 ng/mL was 51·4% (95% CI 34·0-68·6), and the overall positive predictive value of a PSA threshold of 3·0 ng/mL was 32·1% (20·3-46·0). INTERPRETATION: After the first screening round, carriers of MSH2 and MSH6 pathogenic variants had a higher incidence of prostate cancer compared with age-matched non-carrier controls. These findings support the use of targeted PSA screening in these men to identify those with clinically significant prostate cancer. Further annual screening rounds will need to confirm these findings. FUNDING: Cancer Research UK, The Ronald and Rita McAulay Foundation, the National Institute for Health Research support to Biomedical Research Centres (The Institute of Cancer Research and Royal Marsden NHS Foundation Trust; Oxford; Manchester and the Cambridge Clinical Research Centre), Mr and Mrs Jack Baker, the Cancer Council of Tasmania, Cancer Australia, Prostate Cancer Foundation of Australia, Cancer Council of Victoria, Cancer Council of South Australia, the Victorian Cancer Agency, Cancer Australia, Prostate Cancer Foundation of Australia, Asociación Española Contra el Cáncer (AECC), the Instituto de Salud Carlos III, Fondo Europeo de Desarrollo Regional (FEDER), the Institut Català de la Salut, Autonomous Government of Catalonia, Fundação para a Ciência e a Tecnologia, National Institutes of Health National Cancer Institute, Swedish Cancer Society, General Hospital in Malmö Foundation for Combating Cancer

    Genome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligence

    Get PDF
    Intelligence is highly heritable(1) and a major determinant of human health and well-being(2). Recent genome-wide meta-analyses have identified 24 genomic loci linked to variation in intelligence3-7, but much about its genetic underpinnings remains to be discovered. Here, we present a large-scale genetic association study of intelligence (n = 269,867), identifying 205 associated genomic loci (190 new) and 1,016 genes (939 new) via positional mapping, expression quantitative trait locus (eQTL) mapping, chromatin interaction mapping, and gene-based association analysis. We find enrichment of genetic effects in conserved and coding regions and associations with 146 nonsynonymous exonic variants. Associated genes are strongly expressed in the brain, specifically in striatal medium spiny neurons and hippocampal pyramidal neurons. Gene set analyses implicate pathways related to nervous system development and synaptic structure. We confirm previous strong genetic correlations with multiple health-related outcomes, and Mendelian randomization analysis results suggest protective effects of intelligence for Alzheimer's disease and ADHD and bidirectional causation with pleiotropic effects for schizophrenia. These results are a major step forward in understanding the neurobiology of cognitive function as well as genetically related neurological and psychiatric disorders.Peer reviewe

    Planetary Climates: Terraforming in Science Fiction

    Get PDF

    A systematic review of the psychometric properties of self-report research utilization measures used in healthcare

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In healthcare, a gap exists between what is known from research and what is practiced. Understanding this gap depends upon our ability to robustly measure research utilization.</p> <p>Objectives</p> <p>The objectives of this systematic review were: to identify self-report measures of research utilization used in healthcare, and to assess the psychometric properties (acceptability, reliability, and validity) of these measures.</p> <p>Methods</p> <p>We conducted a systematic review of literature reporting use or development of self-report research utilization measures. Our search included: multiple databases, ancestry searches, and a hand search. Acceptability was assessed by examining time to complete the measure and missing data rates. Our approach to reliability and validity assessment followed that outlined in the <it>Standards for Educational and Psychological Testing</it>.</p> <p>Results</p> <p>Of 42,770 titles screened, 97 original studies (108 articles) were included in this review. The 97 studies reported on the use or development of 60 unique self-report research utilization measures. Seven of the measures were assessed in more than one study. Study samples consisted of healthcare providers (92 studies) and healthcare decision makers (5 studies). No studies reported data on acceptability of the measures. Reliability was reported in 32 (33%) of the studies, representing 13 of the 60 measures. Internal consistency (Cronbach's Alpha) reliability was reported in 31 studies; values exceeded 0.70 in 29 studies. Test-retest reliability was reported in 3 studies with Pearson's <it>r </it>coefficients > 0.80. No validity information was reported for 12 of the 60 measures. The remaining 48 measures were classified into a three-level validity hierarchy according to the number of validity sources reported in 50% or more of the studies using the measure. Level one measures (n = 6) reported evidence from any three (out of four possible) <it>Standards </it>validity sources (which, in the case of single item measures, was all applicable validity sources). Level two measures (n = 16) had evidence from any two validity sources, and level three measures (n = 26) from only one validity source.</p> <p>Conclusions</p> <p>This review reveals significant underdevelopment in the measurement of research utilization. Substantial methodological advances with respect to construct clarity, use of research utilization and related theory, use of measurement theory, and psychometric assessment are required. Also needed are improved reporting practices and the adoption of a more contemporary view of validity (<it>i.e.</it>, the <it>Standards</it>) in future research utilization measurement studies.</p

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms
    corecore