19 research outputs found

    A Problem Solving Environment for Modelling Stony Coral Morphogenesis

    Full text link
    Apart from experimental and theoretical approaches, computer simulation is an important tool in testing hypotheses about stony coral growth. However, the construction and use of such simulation tools needs extensive computational skills and knowledge that is not available to most research biologists. Problem solving environments (PSEs) aim to provide a framework that hides implementation details and allows the user to formulate and analyse a problem in the language of the subject area. We have developed a prototypical PSE to study the morphogenesis of corals using a multi-model approach. In this paper we describe the design and implementation of this PSE, in which simulations of the coral's shape and its environment have been combined. We will discuss the relevance of our results for the future development of PSEs for studying biological growth and morphogenesis

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02

    Measurement of event-shape observables in Z→ℓ+ℓ− events in pp collisions at √ s=7 TeV with the ATLAS detector at the LHC

    Get PDF
    Event-shape observables measured using charged particles in inclusive ZZ-boson events are presented, using the electron and muon decay modes of the ZZ bosons. The measurements are based on an integrated luminosity of 1.1fb−11.1 {\rm fb}^{-1} of proton--proton collisions recorded by the ATLAS detector at the LHC at a centre-of-mass energy s=7\sqrt{s}=7 TeV. Charged-particle distributions, excluding the lepton--antilepton pair from the ZZ-boson decay, are measured in different ranges of transverse momentum of the ZZ boson. Distributions include multiplicity, scalar sum of transverse momenta, beam thrust, transverse thrust, spherocity, and F\mathcal{F}-parameter, which are in particular sensitive to properties of the underlying event at small values of the ZZ-boson transverse momentum. The Sherpa event generator shows larger deviations from the measured observables than Pythia8 and Herwig7. Typically, all three Monte Carlo generators provide predictions that are in better agreement with the data at high ZZ-boson transverse momenta than at low ZZ-boson transverse momenta and for the observables that are less sensitive to the number of charged particles in the event.Comment: 36 pages plus author list + cover page (54 pages total), 14 figures, 4 tables, submitted to EPJC, All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2014-0

    Derivation and charaeterization of Canine embryonic Stem cell lines with in vitro and in vivo differentiation potential

    No full text
    Embryonic stem cells (ESCs) represent permanent cell lines that can be maintained in an undifferentiated state. In an environment that induces differentiation, they form derivatives of the three embryonic germ layers: mesoderm, ectoderm, and endoderm. These characteristics give ESCs great potential for both basic research and clinical applications in the areas of regenerative medicine and tissue engineering. The establishment of ESCs from large animals that model human diseases is of significant importance. We describe the derivation of permanent canine cell lines from preimplantation- stage embryos. Similar to human ESCs, canine ESCs expressed OCT3/4, NANOG, SOX2, SSEA-3, SSEA-4, TRA-1-60, TRA-1-81, and alkaline phosphatase, whereas they expressed very low levels of SSEA-1. They maintained a normal karyotype and morphology typical of undifferentiated ESCs after multiple in vitro passages and rounds of cryopreservation. Plating cells in the absence of a feeder layer, either in attachment or suspension culture, resulted in the formation of embryoid bodies and their differentiation to multiple cell types. In vivo, canine ESCs gave rise to teratomas comprising cell types of all three embryonic germ layers. These cells represent the first pluripotent canine ESC lines with both in vitro and in vivo differentiation potential and offer the exciting possibility of testing the efficacy and safety of ESC-based therapies in large animal models of human disease

    The Bladder Tumor Suppressor Protein TERE1 (UBIAD1)Modulates Cell Cholesterol: Implications for Tumor Progression

    No full text
    Convergent evidence implicates the TERE1 protein in human bladder tumor progression and lipid metabolism. Previously, reduced TERE1 expression was found in invasive urologic cancers and inhibited cell growth upon re-expression. A role in lipid metabolism was suggested by TERE1 binding to APOE, a cholesterol carrier, and to TBL2, a candidate protein in triglyceride disorders. Natural TERE1 mutations associate with Schnyder's corneal dystrophy, characterized by lipid accumulation. TERE1 catalyzes menaquinone synthesis, known to affect cholesterol homeostasis. To explore this relationship, we altered TERE1 and TBL2 dosage via ectopic expression and interfering RNA and measured cholesterol by Amplex red. Protein interactions of wild-type and mutant TERE1 with GST-APOE were evaluated by binding assays and molecular modeling. We conducted a bladder tumor microarray TERE1 expression analysis and assayed tumorigenicity of J82 cells ectopically expressing TERE1. TERE1 expression was reduced in a third of invasive specimens. Ectopic TERE1 expression in J82 bladder cancer cells dramatically inhibited nude mouse tumorigenesis. TERE1 and TBL2 proteins inversely modulated cellular cholesterol in HEK293 and bladder cancer cells from 20% to 50%. TERE1 point mutations affected APOE interactions, and resulted in cholesterol levels that differed from wild type. Elevated tumor cell cholesterol is known to affect apoptosis and growth signaling; thus, loss of TERE1 in invasive bladder cancer may represent a defect in menaquinone-mediated cholesterol homeostasis that contributes to progression

    Evidence for the associated production of a W boson and a top quark in ATLAS at √s = 7 TeV

    Get PDF
    Contains fulltext : 103353.pdf (preprint version ) (Open Access
    corecore