264 research outputs found

    Strong-coupling expansion and effective hamiltonians

    Full text link
    When looking for analytical approaches to treat frustrated quantum magnets, it is often very useful to start from a limit where the ground state is highly degenerate. This chapter discusses several ways of deriving {effective Hamiltonians} around such limits, starting from standard {degenerate perturbation theory} and proceeding to modern approaches more appropriate for the derivation of high-order effective Hamiltonians, such as the perturbative continuous unitary transformations or contractor renormalization. In the course of this exposition, a number of examples taken from the recent literature are discussed, including frustrated ladders and other dimer-based Heisenberg models in a field, as well as the mapping between frustrated Ising models in a transverse field and quantum dimer models.Comment: To appear as a chapter in "Highly Frustrated Magnetism", Eds. C. Lacroix, P. Mendels, F. Mil

    Display of probability densities for data from a continuous distribution

    Get PDF
    Based on cumulative distribution functions, Fourier series expansion and Kolmogorov tests, we present a simple method to display probability densities for data drawn from a continuous distribution. It is often more efficient than using histograms.Comment: 5 pages, 4 figures, presented at Computer Simulation Studies XXIV, Athens, GA, 201

    MSMEG_2731, an Uncharacterized Nucleic Acid Binding Protein from Mycobacterium smegmatis, Physically Interacts with RPS1

    Get PDF
    While the M. smegmatis genome has been sequenced, only a small portion of the genes have been characterized experimentally. Here, we purify and characterize MSMEG_2731, a conserved hypothetical alanine and arginine rich M. smegmatis protein. Using ultracentrifugation, we show that MSMEG_2731 is a monomer in vitro. MSMEG_2731 exists at a steady level throughout the M. smegmatis life-cycle. Combining results from pull-down techniques and LS-MS/MS, we show that MSMEG_2731 interacts with ribosomal protein S1. The existence of this interaction was confirmed by co-immunoprecipitation. We also show that MSMEG_2731 can bind ssDNA, dsDNA and RNA in vitro. Based on the interactions of MSMEG_2731 with RPS1 and RNA, we propose that MSMEG_2731 is involved in the transcription-translation process in vivo

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT

    Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at s√=8 TeV with ATLAS

    Get PDF
    Measurements of fiducial and differential cross sections are presented for Higgs boson production in proton-proton collisions at a centre-of-mass energy of s√=8 TeV. The analysis is performed in the H → γγ decay channel using 20.3 fb−1 of data recorded by the ATLAS experiment at the CERN Large Hadron Collider. The signal is extracted using a fit to the diphoton invariant mass spectrum assuming that the width of the resonance is much smaller than the experimental resolution. The signal yields are corrected for the effects of detector inefficiency and resolution. The pp → H → γγ fiducial cross section is measured to be 43.2 ±9.4(stat.) − 2.9 + 3.2 (syst.) ±1.2(lumi)fb for a Higgs boson of mass 125.4GeV decaying to two isolated photons that have transverse momentum greater than 35% and 25% of the diphoton invariant mass and each with absolute pseudorapidity less than 2.37. Four additional fiducial cross sections and two cross-section limits are presented in phase space regions that test the theoretical modelling of different Higgs boson production mechanisms, or are sensitive to physics beyond the Standard Model. Differential cross sections are also presented, as a function of variables related to the diphoton kinematics and the jet activity produced in the Higgs boson events. The observed spectra are statistically limited but broadly in line with the theoretical expectations

    Measurement of the cross-section of high transverse momentum vector bosons reconstructed as single jets and studies of jet substructure in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of the cross-section for high transverse momentum W and Z bosons produced in pp collisions and decaying to all-hadronic final states. The data used in the analysis were recorded by the ATLAS detector at the CERN Large Hadron Collider at a centre-of-mass energy of √s = 7 TeV;{\rm Te}{\rm V}andcorrespondtoanintegratedluminosityof and correspond to an integrated luminosity of 4.6\;{\rm f}{{{\rm b}}^{-1}}.ThemeasurementisperformedbyreconstructingtheboostedWorZbosonsinsinglejets.ThereconstructedjetmassisusedtoidentifytheWandZbosons,andajetsubstructuremethodbasedonenergyclusterinformationinthejetcentreofmassframeisusedtosuppressthelargemultijetbackground.ThecrosssectionforeventswithahadronicallydecayingWorZboson,withtransversemomentum. The measurement is performed by reconstructing the boosted W or Z bosons in single jets. The reconstructed jet mass is used to identify the W and Z bosons, and a jet substructure method based on energy cluster information in the jet centre-of-mass frame is used to suppress the large multi-jet background. The cross-section for events with a hadronically decaying W or Z boson, with transverse momentum {{p}_{{\rm T}}}\gt 320\;{\rm Ge}{\rm V}andpseudorapidity and pseudorapidity |\eta |\lt 1.9,ismeasuredtobe, is measured to be {{\sigma }_{W+Z}}=8.5\pm 1.7$ pb and is compared to next-to-leading-order calculations. The selected events are further used to study jet grooming techniques

    Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV

    Search for pair-produced long-lived neutral particles decaying to jets in the ATLAS hadronic calorimeter in ppcollisions at √s=8TeV

    Get PDF
    The ATLAS detector at the Large Hadron Collider at CERN is used to search for the decay of a scalar boson to a pair of long-lived particles, neutral under the Standard Model gauge group, in 20.3fb−1of data collected in proton–proton collisions at √s=8TeV. This search is sensitive to long-lived particles that decay to Standard Model particles producing jets at the outer edge of the ATLAS electromagnetic calorimeter or inside the hadronic calorimeter. No significant excess of events is observed. Limits are reported on the product of the scalar boson production cross section times branching ratio into long-lived neutral particles as a function of the proper lifetime of the particles. Limits are reported for boson masses from 100 GeVto 900 GeV, and a long-lived neutral particle mass from 10 GeVto 150 GeV

    Evaluating the effectiveness of a tailored multifaceted performance feedback intervention to improve the quality of care: protocol for a cluster randomized trial in intensive care

    Get PDF
    Contains fulltext : 95871.pdf (publisher's version ) (Open Access)ABSTRACT: BACKGROUND: Feedback is potentially effective in improving the quality of care. However, merely sending reports is no guarantee that performance data are used as input for systematic quality improvement (QI). Therefore, we developed a multifaceted intervention tailored to prospectively analyzed barriers to using indicators: the Information Feedback on Quality Indicators (InFoQI) program. This program aims to promote the use of performance indicator data as input for local systematic QI. We will conduct a study to assess the impact of the InFoQI program on patient outcome and organizational process measures of care, and to gain insight into barriers and success factors that affected the program's impact. The study will be executed in the context of intensive care. This paper presents the study's protocol. METHODS/DESIGN: We will conduct a cluster randomized controlled trial with intensive care units (ICUs) in the Netherlands. We will include ICUs that submit indicator data to the Dutch National Intensive Care Evaluation (NICE) quality registry and that agree to allocate at least one intensivist and one ICU nurse for implementation of the intervention. Eligible ICUs (clusters) will be randomized to receive basic NICE registry feedback (control arm) or to participate in the InFoQI program (intervention arm). The InFoQI program consists of comprehensive feedback, establishing a local, multidisciplinary QI team, and educational outreach visits. The primary outcome measures will be length of ICU stay and the proportion of shifts with a bed occupancy rate above 80%. We will also conduct a process evaluation involving ICUs in the intervention arm to investigate their actual exposure to and experiences with the InFoQI program. DISCUSSION: The results of this study will inform those involved in providing ICU care on the feasibility of a tailored multifaceted performance feedback intervention and its ability to accelerate systematic and local quality improvement. Although our study will be conducted within the domain of intensive care, we believe our conclusions will be generalizable to other settings that have a quality registry including an indicator set available. TRIAL REGISTRATION: Current Controlled Trials ISRCTN50542146

    A Natural Supersymmetric Model with MeV Dark Matter

    Full text link
    It has previously been proposed that annihilating dark matter particles with MeV-scale masses could be responsible for the flux of 511 keV photons observed from the region of the Galactic Bulge. The conventional wisdom, however, is that it is very challenging to construct a viable particle physics model containing MeV dark matter. In this letter, we challenge this conclusion by describing a simple and natural supersymmetric model in which the lightest supersymmetric particle naturally has a MeV-scale mass and the other phenomenological properties required to generate the 511 keV emission. In particular, the small (\sim 10510^{-5}) effective couplings between dark matter and the Standard Model fermions required in this scenario naturally lead to radiative corrections that generate MeV-scale masses for both the dark matter candidate and the mediator particle.Comment: 4 pages, 1 figure. v2: Small modification to discussion of spectru
    corecore