350 research outputs found

    Absorbate-Induced Piezochromism in a Porous Molecular Crystal

    Get PDF
    Atmospherically stable porous frameworks and materials are interesting for heterogeneous solid–gas applications. One motivation is the direct and selective uptake of pollutant/hazardous gases, where the material produces a measurable response in the presence of the analyte. In this report, we present a combined experimental and theoretical rationalization for the piezochromic response of a robust and porous molecular crystal built from an extensively fluorinated trispyrazole. The electronic response of the material is directly determined by analyte uptake, which provokes a subtle lattice contraction and an observable bathochromic shift in the optical absorption onset. Selectivity for fluorinated absorbates is demonstrated, and toluene is also found to crystallize within the pore. Furthermore, we demonstrate the application of electronic structure calculations to predict a physicochemical response, providing the foundations for the design of electronically tunable porous solids with the chemical properties required for development of novel gas-uptake media

    Variable-step-size LMS adaptive filter for digital chromatic dispersion compensation in PDM-QPSK coherent transmission system

    Get PDF
    High bit rates optical communication systems pose the challenge of their tolerance to linear and nonlinear fiber impairments. Digital filters in coherent optical receivers can be used to mitigate the chromatic dispersion entirely in the optical transmission system. In this paper, the least mean square adaptive filter has been developed for chromatic equalization in a 112-Gbit/s polarization division multiplexed quadrature phase shift keying coherent optical transmission system established on the VPIphotonics simulation platform. It is found that the chromatic dispersion equalization shows a better performance when a smaller step size is used. However, the smaller step size in least mean square filter will lead to a slower iterative operation to achieve the guaranteed convergence. In order to solve this contradiction, an adaptive filter employing variable-step-size least mean square algorithm is proposed to compensate the chromatic dispersion in the 112-Gbit/s coherent communication system. The variable-step-size least mean square filter could make a compromise and optimization between the chromatic dispersion equalization performance and the algorithm converging speed. Meanwhile, the required tap number and the converged tap weights distribution of the variable-step-size least mean square filter for a certain fiber chromatic dispersion are analyzed and discussed in the investigation of the filter feature

    Mechanisms of c-Myc Degradation by Nickel Compounds and Hypoxia

    Get PDF
    Nickel (Ni) compounds have been found to cause cancer in humans and animal models and to transform cells in culture. At least part of this effect is mediated by stabilization of hypoxia inducible factor (HIF1a) and activating its downstream signaling. Recent studies reported that hypoxia signaling might either antagonize or enhance c-myc activity depending on cell context. We investigated the effect of nickel on c-myc levels, and demonstrated that nickel, hypoxia, and other hypoxia mimetics degraded c-myc protein in a number of cancer cells (A549, MCF-7, MDA-453, and BT-474). The degradation of the c-Myc protein was mediated by the 26S proteosome. Interestingly, knockdown of both HIF-1α and HIF-2α attenuated c-Myc degradation induced by Nickel and hypoxia, suggesting the functional HIF-1α and HIF-2α was required for c-myc degradation. Further studies revealed two potential pathways mediated nickel and hypoxia induced c-myc degradation. Phosphorylation of c-myc at T58 was significantly increased in cells exposed to nickel or hypoxia, leading to increased ubiquitination through Fbw7 ubiquitin ligase. In addition, nickel and hypoxia exposure decreased USP28, a c-myc de-ubiquitinating enzyme, contributing to a higher steady state level of c-myc ubiquitination and promoting c-myc degradation. Furthermore, the reduction of USP28 protein by hypoxia signaling is due to both protein degradation and transcriptional repression. Nickel and hypoxia exposure significantly increased the levels of dimethylated H3 lysine 9 at the USP28 promoter and repressed its expression. Our study demonstrated that Nickel and hypoxia exposure increased c-myc T58 phosphorylation and decreased USP28 protein levels in cancer cells, which both lead to enhanced c-myc ubiquitination and proteasomal degradation

    Design and Analysis of Nanotube-Based Memory Cells

    Get PDF
    In this paper, we proposed a nanoelectromechanical design as memory cells. A simple design contains a double-walled nanotube-based oscillator. Atomistic materials are deposed on the outer nanotube as electrodes. Once the WRITE voltages are applied on electrodes, the induced electromagnetic force can overcome the interlayer friction between the inner and outer tubes so that the oscillator can provide stable oscillations. The READ voltages are employed to indicate logic 0/1 states based on the position of the inner tube. A new continuum modeling is developed in this paper to analyze large models of the proposed nanoelectromechanical design. Our simulations demonstrate the mechanisms of the proposed design as both static and dynamic random memory cells

    Isolation of a Rickettsial Pathogen from a Non-Hematophagous Arthropod

    Get PDF
    Rickettsial diversity is intriguing in that some species are transmissible to vertebrates, while others appear exclusive to invertebrate hosts. Of particular interest is Rickettsia felis, identifiable in both stored product insect pests and hematophagous disease vectors. To understand rickettsial survival tactics in, and probable movement between, both insect systems will explicate the determinants of rickettsial pathogenicity. Towards this objective, a population of Liposcelis bostrychophila, common booklice, was successfully used for rickettsial isolation in ISE6 (tick-derived cells). Rickettsiae were also observed in L. bostrychophila by electron microscopy and in paraffin sections of booklice by immunofluorescence assay using anti-R. felis polyclonal antibody. The isolate, designated R. felis strain LSU-Lb, resembles typical rickettsiae when examined by microscopy. Sequence analysis of portions of the Rickettsia specific 17-kDa antigen gene, citrate synthase (gltA) gene, rickettsial outer membrane protein A (ompA) gene, and the presence of the R. felis plasmid in the cell culture isolate confirmed the isolate as R. felis. Variable nucleotide sequences from the isolate were obtained for R. felis-specific pRF-associated putative tldD/pmbA. Expression of rickettsial outer membrane protein B (OmpB) was verified in R. felis (LSU-Lb) using a monoclonal antibody. Additionally, a quantitative real-time PCR assay was used to identify a significantly greater median rickettsial load in the booklice, compared to cat flea hosts. With the potential to manipulate arthropod host biology and infect vertebrate hosts, the dual nature of R. felis provides an excellent model for the study of rickettsial pathogenesis and transmission. In addition, this study is the first isolation of a rickettsial pathogen from a non-hematophagous arthropod

    Production properties of K*(892) vector mesons and their spin alignment as measured in the NOMAD experiment

    Get PDF
    First measurements of K*(892) mesons production properties and their spin alignment in nu_mu charged current (CC) and neutral current (NC) interactions are presented. The analysis of the full data sample of the NOMAD experiment is performed in different kinematic regions. For K*+ and K*- mesons produced in nu_mu CC interactions and decaying into K0 pi+/- we have found the following yields per event: (2.6 +/- 0.2 (stat.) +/- 0.2 (syst.))% and (1.6 +/- 0.1 (stat.) +/- 0.1 (syst.))% respectively, while for the K*+ and K*- mesons produced in nu NC interactions the corresponding yields per event are: (2.5 +/- 0.3 (stat.) +/- 0.3 (syst.))% and (1.0 +/- 0.3 (stat.) +/- 0.2 (syst.))%. The results obtained for the rho00 parameter, 0.40 +/- 0.06 (stat) +/- 0.03 (syst) and 0.28 +/- 0.07 (stat) +/- 0.03 (syst) for K*+ and K*- produced in nu_mu CC interactions, are compared to theoretical predictions tuned on LEP measurements in e+e- annihilation at the Z0 pole. For K*+ mesons produced in nu NC interactions the measured rho00 parameter is 0.66 +/- 0.10 (stat) +/- 0.05 (syst).Comment: 20 p

    Thermal Conductivity of Carbon Nanotubes and their Polymer Nanocomposites: A Review

    Get PDF
    Thermally conductive polymer composites offer new possibilities for replacing metal parts in several applications, including power electronics, electric motors and generators, heat exchangers, etc., thanks to the polymer advantages such as light weight, corrosion resistance and ease of processing. Current interest to improve the thermal conductivity of polymers is focused on the selective addition of nanofillers with high thermal conductivity. Unusually high thermal conductivity makes carbon nanotube (CNT) the best promising candidate material for thermally conductive composites. However, the thermal conductivities of polymer/CNT nanocomposites are relatively low compared with expectations from the intrinsic thermal conductivity of CNTs. The challenge primarily comes from the large interfacial thermal resistance between the CNT and the surrounding polymer matrix, which hinders the transfer of phonon dominating heat conduction in polymer and CNT. This article reviews the status of worldwide research in the thermal conductivity of CNTs and their polymer nanocomposites. The dependence of thermal conductivity of nanotubes on the atomic structure, the tube size, the morphology, the defect and the purification is reviewed. The roles of particle/polymer and particle/particle interfaces on the thermal conductivity of polymer/CNT nanocomposites are discussed in detail, as well as the relationship between the thermal conductivity and the micro- and nano-structure of the composite
    • …
    corecore