139 research outputs found

    Breeding Chickpea for Improved Adaptation to the Semi-Arid Tropical Environments

    Get PDF
    Chickpea (Cicer arietinum L.), also known as Garbanzo bean or Bengal gram, is the second most cultivated grain legume grown globally after dry bean (FAOSTAT data, 2007). It is cultivated annually on an area of about 10 million hectares over 50 countries. Over 80% of its area is in the semi-arid tropics (SAT) that encompass most of south Asia, parts of southeast Asia, a swathe across sub-Saharan Africa, much of southern and eastern Africa, and parts of Latin America. These regions are characterized by high atmospheric water demand, a high mean annual temperature, limited and erratic monsoonal rainfall, and nutrient poor soils. The major constraints to chickpea production in SAT include terminal drought and heat stresses, fusarium wilt and Helicoverpa pod borer. Soil salinity is also a major constraint to adaptation of chickpea in some areas, particularly in India, Pakistan, Bangladesh, Iran and Australia. High instances of dry root rot are reported from Sub- Saharan Africa and India. India is the largest chickpea producing country with 64% of global chickpea production (FAOSTAT data, 2007). Chickpea is grown on 6.7 m ha from latitude 32°N in northern India with cooler, long-season environment to 10°N in southern India with warmer, short season environment. There has been a large, shift in chickpea area from north to central and southern India, mainly because of expansion in area under irrigation and wheat cultivation in northern India. During the past four decades, chickpea area declined by about 4.2 m ha in northern and north-eastern states (Punjab, Haryana, Uttar Pradesh and Bihar) and increased by 2.6 m ha in central and southern states (Madhya Pradesh, Maharashtra, Karnataka and Andhra Pradesh). This drastic shift in chickpea cultivation from cooler, long-season environments to warmer, short-season environments resulted in chickpeas being more prone to abiotic and biotic stresses that are prevalent in warm short season environments (e.g. terminal drought and heat stresses). The crop improvement efforts at ICRISAT and National Agricultural Research System (NARS) in SAT countries have largely focused on improving adaptation of chickpea to SAT environments by enhancing resistance/tolerance to biotic and abiotic stresses prevalent in SAT environments. This paper reviews recent progress in breeding chickpea for improved adaptation to the SAT environments

    District level baseline survey of family planning program in Uttar Pradesh: Tehri Garhwal

    Get PDF
    Uttar Pradesh (UP) is the most populous state in India, with a population of 139 million, as of the 1991 census. The Sample Registration System in 1992 indicated a high population growth rate accompanied by a very high birth rate. The authorities have been taking several measures to contain the growth and bring a rapid decline in fertility rates. It is in this context that the Government of India and the United States Agency for International Development reached an agreement to begin the Innovations in Family Planning Services Project (IFPS) under the management of the State Innovations in Family Planning Services Agency (SIFPSA). In this context, it has been decided to take up baseline surveys in 15 districts spread over the different regions of the state. The work of conducting the surveys in Ghaziabad and Tehri Garhwal districts has been entrusted to the Centre for Development Research and Training, Madras. This report contains the details of the survey conducted in the district of Tehri Garhwal

    District level baseline survey of family planning program in Uttar Pradesh: Nainital

    Get PDF
    In 1992, the Ministry of Health and Family Welfare and the United States Agency for International Development, New Delhi, began the Innovations in Family Planning Services Project (IFPS) under the management of the State Innovation in Family Planning Services Agency (SIFPSA), Lucknow. The goal was to reduce the fertility rate in Uttar Pradesh by expanding and improving family planning (FP) services. To achieve this, the IFPS project will support service innovations in the public and nongovernmental sectors and through contraceptive social marketing mechanisms. The Baseline Survey in Uttar Pradesh (BSUP) is being undertaken as one important component of the IFPS project. The BSUP is designed to provide information on fertility, FP, and maternal and child health care that will be helpful in monitoring and evaluating population and family welfare policies and programs. SIFPSA has designated the Population Council as the nodal organization responsible for providing technical guidance for the survey. The Indian Institute of Health Management Research, Jaipur, will conduct the survey in the district of Nainital

    District level baseline survey of family planning program in Uttar Pradesh: Pithoragarh

    Get PDF
    In 1992, the Ministry of Health and Family Welfare and the United States Agency for International Development, New Delhi, began the Innovations in Family Planning Services Project (IFPS) under the management of the State Innovation in Family Planning Services Agency (SIFPSA), Lucknow. The goal was to reduce the fertility rate in Uttar Pradesh by expanding and improving family planning (FP) services. To achieve this, the IFPS project will support service innovations in the public sector and nongovernmental sectors and through contraceptive social marketing mechanisms. The Baseline Survey in Uttar Pradesh (BSUP) is being undertaken as one important component of the IFPS project. The BSUP is designed to provide information on fertility, FP, and maternal and child health care that will be helpful in monitoring and evaluating population and family welfare policies and programs. SIFPSA has designated the Population Council as the nodal organization responsible for providing technical guidance for the survey. The responsibility of conducting this multicentric survey in the district of Pithoragarh was given to the Indian Institute of Health Management Research, Jaipur

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02

    Measurement of the cross section of high transverse momentum Z→bb̄ production in proton–proton collisions at √s = 8 TeV with the ATLAS detector

    Get PDF
    This Letter reports the observation of a high transverse momentum Z→bb̄ signal in proton–proton collisions at √s=8 TeV and the measurement of its production cross section. The data analysed were collected in 2012 with the ATLAS detector at the LHC and correspond to an integrated luminosity of 19.5 fb−Âč. The Z→bb̄ decay is reconstructed from a pair of b -tagged jets, clustered with the anti-ktkt jet algorithm with R=0.4R=0.4, that have low angular separation and form a dijet with pT>200 GeVpT>200 GeV. The signal yield is extracted from a fit to the dijet invariant mass distribution, with the dominant, multi-jet background mass shape estimated by employing a fully data-driven technique that reduces the dependence of the analysis on simulation. The fiducial cross section is determined to be σZ→bbÂŻfid=2.02±0.20 (stat.) ±0.25 (syst.)±0.06 (lumi.) pb=2.02±0.33 pb, in good agreement with next-to-leading-order theoretical predictions

    Measurement of the branching ratio Γ(Λb⁰ → ψ(2S)Λ0)/Γ(Λb⁰ → J/ψΛ0) with the ATLAS detector

    Get PDF
    An observation of the Λb0→ψ(2S)Λ0\Lambda_b^0 \rightarrow \psi(2S) \Lambda^0 decay and a comparison of its branching fraction with that of the Λb0→J/ψΛ0\Lambda_b^0 \rightarrow J/\psi \Lambda^0 decay has been made with the ATLAS detector in proton--proton collisions at s=8 \sqrt{s}=8\,TeV at the LHC using an integrated luminosity of 20.6 20.6\,fb−1^{-1}. The J/ψJ/\psi and ψ(2S)\psi(2S) mesons are reconstructed in their decays to a muon pair, while the Λ0→pπ−\Lambda^0\rightarrow p\pi^- decay is exploited for the Λ0\Lambda^0 baryon reconstruction. The Λb0\Lambda_b^0 baryons are reconstructed with transverse momentum pT>10 p_{\rm T}>10\,GeV and pseudorapidity ∣η∣<2.1|\eta|<2.1. The measured branching ratio of the Λb0→ψ(2S)Λ0\Lambda_b^0 \rightarrow \psi(2S) \Lambda^0 and Λb0→J/ψΛ0\Lambda_b^0 \rightarrow J/\psi \Lambda^0 decays is Γ(Λb0→ψ(2S)Λ0)/Γ(Λb0→J/ψΛ0)=0.501±0.033(stat)±0.019(syst)\Gamma(\Lambda_b^0 \rightarrow \psi(2S)\Lambda^0)/\Gamma(\Lambda_b^0 \rightarrow J/\psi\Lambda^0) = 0.501\pm 0.033 ({\rm stat})\pm 0.019({\rm syst}), lower than the expectation from the covariant quark model.Comment: 12 pages plus author list (28 pages total), 5 figures, 1 table, published on Physics Letters B 751 (2015) 63-80. All figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/BPHY-2013-08

    Measurement of the View the tt production cross-section using eÎŒ events with b-tagged jets in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This paper describes a measurement of the inclusive top quark pair production cross-section (σttÂŻ) with a data sample of 3.2 fb−1 of proton–proton collisions at a centre-of-mass energy of √s = 13 TeV, collected in 2015 by the ATLAS detector at the LHC. This measurement uses events with an opposite-charge electron–muon pair in the final state. Jets containing b-quarks are tagged using an algorithm based on track impact parameters and reconstructed secondary vertices. The numbers of events with exactly one and exactly two b-tagged jets are counted and used to determine simultaneously σttÂŻ and the efficiency to reconstruct and b-tag a jet from a top quark decay, thereby minimising the associated systematic uncertainties. The cross-section is measured to be: σttÂŻ = 818 ± 8 (stat) ± 27 (syst) ± 19 (lumi) ± 12 (beam) pb, where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the integrated luminosity and the LHC beam energy, giving a total relative uncertainty of 4.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. A fiducial measurement corresponding to the experimental acceptance of the leptons is also presented
    • 

    corecore