3,100 research outputs found

    Prospects for discovering supersymmetric long-lived particles with MoEDAL

    Full text link
    We present a study on the possibility of searching for long-lived supersymmetric partners with the MoEDAL experiment at the LHC. MoEDAL is sensitive to highly ionising objects such as magnetic monopoles or massive (meta)stable electrically charged particles. We focus on prospects of directly detecting long-lived sleptons in a phenomenologically realistic model which involves an intermediate neutral long-lived particle in the decay chain. This scenario is not yet excluded by the current data from ATLAS or CMS, and is compatible with astrophysical constraints. Using Monte Carlo simulation, we compare the sensitivities of MoEDAL versus ATLAS in scenarios where MoEDAL could provide discovery reach complementary to ATLAS and CMS, thanks to looser selection criteria combined with the virtual absence of background. It is also interesting to point out that, in such scenarios, in which charged staus are the main long-lived candidates, the relevant mass range for MoEDAL is compatible with a potential role of Supersymmetry in providing an explanation for the anomalous events observed by the ANITA detector.Comment: 12 pages, 6 figures; preliminary results presented in arXiv:1903.11022; matches published version in EPJ

    Dark matter searches at LHC

    Full text link
    Besides Standard Model measurements and other Beyond Standard Model studies, the ATLAS and CMS experiments at the LHC will search for Supersymmetry, one of the most attractive explanation for dark matter. The SUSY discovery potential with early data is presented here together with some first results obtained with 2010 collision data at 7 TeV. Emphasis is placed on measurements and parameter determination that can be performed to disentangle the possible SUSY models and SUSY look-alike and the interpretation of a possible positive supersymmetric signal as an explanation of dark matter.Comment: 15 pages, 14 figures, Invited plenary talk given at DISCRETE 2010: Symposium On Prospects In The Physics Of Discrete Symmetries, 6-11 Dec 2010, Rome, Ital

    Astrophysical Probes of the Constancy of the Velocity of Light

    Get PDF
    We discuss possible tests of the constancy of the velocity of light using distant astrophysical sources such as gamma-ray bursters (GRBs), Active Galactic Nuclei (AGNs) and pulsars. This speculative quest may be motivated by some models of quantum fluctuations in the space-time background, and we discuss explicitly how an energy-dependent variation in photon velocity \delta c/ c \sim - E / M arises in one particular quantum-gravitational model. We then discuss how data on GRBs may be used to set limits on variations in the velocity of light, which we illustrate using BATSE and OSSE observations of the GRBs that have recently been identified optically and for which precise redshifts are available. We show how a regression analysis can be performed to look for an energy-dependent effect that should correlate with redshift. The present data yield a limit M \gsim 10^{15} GeV for the quantum gravity scale. We discuss the prospects for improving this analysis using future data, and how one might hope to distinguish any positive signal from astrophysical effects associated with the sources.Comment: 37 pages LaTeX, 9 eps figures included, uses aasms4.st

    Composite Leptoquarks at the LHC

    Get PDF
    If electroweak symmetry breaking arises via strongly-coupled physics, the observed suppression of flavour-changing processes suggests that fermion masses should arise via mixing of elementary fermions with composite fermions of the strong sector. The strong sector then carries colour charge, and may contain composite leptoquark states, arising either as TeV scale resonances, or even as light, pseudo-Nambu-Goldstone bosons. The latter, since they are coupled to colour, get a mass of the order of several hundred GeV, beyond the reach of current searches at the Tevatron. The same generic mechanism that suppresses flavour-changing processes suppresses leptoquark-mediated rare processes, making it conceivable that the many stringent constraints may be evaded. The leptoquarks couple predominantly to third-generation quarks and leptons, and the prospects for discovery at LHC appear to be good. As an illustration, a model based on the Pati-Salam symmetry is described, and its embedding in models with a larger symmetry incorporating unification of gauge couplings, which provide additional motivation for leptoquark states at or below the TeV scale, is discussed.Comment: 10 pp, version to appear in JHE

    SUSY discovery prospects with MoEDAL

    Full text link
    We present a preliminary study on the possibility to search for massive long-lived electrically charged particles at the MoEDAL detector. MoEDAL is sensitive to highly ionising objects such as magnetic monopoles or massive (meta-)stable electrically charged particles and we focus on the latter in this paper. Requirements on triggering or reducing the cosmic-ray and cavern background, applied in the ATLAS and CMS analyses for long-lived particles, are not necessary at MoEDAL, due to its completely different detector design and extremely low background. On the other hand, MoEDAL requires slow-moving particles, resulting in sensitivity to massive states with typically small production cross sections. Using Monte Carlo simulations, we compare the sensitivities of MoEDAL versus ATLAS/CMS for various long-lived particles in supersymmetric models, and we seek a scenario where MoEDAL can provide discovery reach complementary to ATLAS and CMS.Comment: 8 pages, 5 figures; invited talk in 6th Symposium on Prospects in the Physics of Discrete Symmetries (DISCRETE 2018), 26-30 Nov 2018, Vienna, Austria, presented by V.A.M.; minor changes matching published versio

    Measurement of the cross-section and charge asymmetry of WW bosons produced in proton-proton collisions at s=8\sqrt{s}=8 TeV with the ATLAS detector

    Get PDF
    This paper presents measurements of the W+→Ό+ÎœW^+ \rightarrow \mu^+\nu and W−→Ό−ΜW^- \rightarrow \mu^-\nu cross-sections and the associated charge asymmetry as a function of the absolute pseudorapidity of the decay muon. The data were collected in proton--proton collisions at a centre-of-mass energy of 8 TeV with the ATLAS experiment at the LHC and correspond to a total integrated luminosity of 20.2~\mbox{fb^{-1}}. The precision of the cross-section measurements varies between 0.8% to 1.5% as a function of the pseudorapidity, excluding the 1.9% uncertainty on the integrated luminosity. The charge asymmetry is measured with an uncertainty between 0.002 and 0.003. The results are compared with predictions based on next-to-next-to-leading-order calculations with various parton distribution functions and have the sensitivity to discriminate between them.Comment: 38 pages in total, author list starting page 22, 5 figures, 4 tables, submitted to EPJC. All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2017-13

    Measurement of χ c1 and χ c2 production with s√ = 7 TeV pp collisions at ATLAS

    Get PDF
    The prompt and non-prompt production cross-sections for the χ c1 and χ c2 charmonium states are measured in pp collisions at s√ = 7 TeV with the ATLAS detector at the LHC using 4.5 fb−1 of integrated luminosity. The χ c states are reconstructed through the radiative decay χ c → J/ÏˆÎł (with J/ψ → ÎŒ + ÎŒ −) where photons are reconstructed from Îł → e + e − conversions. The production rate of the χ c2 state relative to the χ c1 state is measured for prompt and non-prompt χ c as a function of J/ψ transverse momentum. The prompt χ c cross-sections are combined with existing measurements of prompt J/ψ production to derive the fraction of prompt J/ψ produced in feed-down from χ c decays. The fractions of χ c1 and χ c2 produced in b-hadron decays are also measured

    Measurements of fiducial and differential cross sections for Higgs boson production in the diphoton decay channel at s√=8 TeV with ATLAS

    Get PDF
    Measurements of fiducial and differential cross sections are presented for Higgs boson production in proton-proton collisions at a centre-of-mass energy of s√=8 TeV. The analysis is performed in the H → γγ decay channel using 20.3 fb−1 of data recorded by the ATLAS experiment at the CERN Large Hadron Collider. The signal is extracted using a fit to the diphoton invariant mass spectrum assuming that the width of the resonance is much smaller than the experimental resolution. The signal yields are corrected for the effects of detector inefficiency and resolution. The pp → H → γγ fiducial cross section is measured to be 43.2 ±9.4(stat.) − 2.9 + 3.2 (syst.) ±1.2(lumi)fb for a Higgs boson of mass 125.4GeV decaying to two isolated photons that have transverse momentum greater than 35% and 25% of the diphoton invariant mass and each with absolute pseudorapidity less than 2.37. Four additional fiducial cross sections and two cross-section limits are presented in phase space regions that test the theoretical modelling of different Higgs boson production mechanisms, or are sensitive to physics beyond the Standard Model. Differential cross sections are also presented, as a function of variables related to the diphoton kinematics and the jet activity produced in the Higgs boson events. The observed spectra are statistically limited but broadly in line with the theoretical expectations

    Search for chargino-neutralino production with mass splittings near the electroweak scale in three-lepton final states in √s=13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for supersymmetry through the pair production of electroweakinos with mass splittings near the electroweak scale and decaying via on-shell W and Z bosons is presented for a three-lepton final state. The analyzed proton-proton collision data taken at a center-of-mass energy of √s=13  TeV were collected between 2015 and 2018 by the ATLAS experiment at the Large Hadron Collider, corresponding to an integrated luminosity of 139  fb−1. A search, emulating the recursive jigsaw reconstruction technique with easily reproducible laboratory-frame variables, is performed. The two excesses observed in the 2015–2016 data recursive jigsaw analysis in the low-mass three-lepton phase space are reproduced. Results with the full data set are in agreement with the Standard Model expectations. They are interpreted to set exclusion limits at the 95% confidence level on simplified models of chargino-neutralino pair production for masses up to 345 GeV

    Measurement of the production of a W boson in association with a charm quark in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    The production of a W boson in association with a single charm quark is studied using 4.6 fb−1 of pp collision data at s√ = 7 TeV collected with the ATLAS detector at the Large Hadron Collider. In events in which a W boson decays to an electron or muon, the charm quark is tagged either by its semileptonic decay to a muon or by the presence of a charmed meson. The integrated and differential cross sections as a function of the pseudorapidity of the lepton from the W-boson decay are measured. Results are compared to the predictions of next-to-leading-order QCD calculations obtained from various parton distribution function parameterisations. The ratio of the strange-to-down sea-quark distributions is determined to be 0.96+0.26−0.30 at Q 2 = 1.9 GeV2, which supports the hypothesis of an SU(3)-symmetric composition of the light-quark sea. Additionally, the cross-section ratio σ(W + +cÂŻÂŻ)/σ(W − + c) is compared to the predictions obtained using parton distribution function parameterisations with different assumptions about the s−sÂŻÂŻÂŻ quark asymmetry
    • 

    corecore