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Abstract

We discuss possible tests of the constancy of the velocity of light using distant astrophysical

sources such as gamma-ray bursters (GRBs), Active Galactic Nuclei (AGNs) and pulsars. This

speculative quest may be motivated by some models of quantum fluctuations in the space-time

background, and we discuss explicitly how an energy-dependent variation in photon velocity

δc/c ∼ −E/M arises in one particular quantum-gravitational model. We then discuss how data

on GRBs may be used to set limits on variations in the velocity of light, which we illustrate using

BATSE and OSSE observations of the GRBs that have recently been identified optically and for

which precise redshifts are available. We show how a regression analysis can be performed to look

for an energy-dependent effect that should correlate with redshift. The present data yield a limit

M >∼ 1015 GeV for the quantum gravity scale. We discuss the prospects for improving this analysis

using future data, and how one might hope to distinguish any positive signal from astrophysical

effects associated with the sources.
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1. Introduction

The constancy of the velocity of light is one of the most basic tenets of modern physics.

It rests on a firm experimental basis and is embedded in Lorentz invariance and the Special

and General Theories of Relativity, as well as Quantum Field Theory. It may therefore

seem absurd to question the constancy of the velocity of light, and unnecessary to propose

testing it. Nevertheless, we think one should keep such a basic precept under review, and

seize any new experimental opportunity to test it more severely than before, particularly if

there are any theoretical speculations that might lead one to question it.

We believe (Amelino-Camelia et al. 1998) that just such an opportunity to test

the constancy of the velocity of light is provided by transient astrophysical sources of γ

rays, such as gamma-ray bursters (GRBs) (Piran 1999, Rees 1997), active galactic nuclei

(AGNs) and pulsars. We also believe (Ellis, Mavromatos & Nanopoulos 1999) that modern

approaches to the quantization of gravity provide some motivation for exploring the

opportunities provided by these astrophysical sources. The primary purpose of this paper

is to review these opportunities and to make some tentative steps towards exploiting them,

by proposing and pioneering some techniques for analyzing the data. This is particularly

timely because we expect large amounts of useful observations of GRBs and AGNs to

become available in the near future.

The primary tool for measuring small variations δc in the velocity of light c is the

variation in arrival time (Amelino-Camelia et al. 1997, Amelino-Camelia et al. 1998)

δt ' −(L/c) (δc/c) observed for a photon travelling a distance L. This clearly places

a premium on observing sources whose emissions exhibit structure on short time scales

∆t <∼ δt located at large distances. Some typical numbers for some astrophysical sources

are shown in Table 1. The relevant photon property that could be correlated with velocity

variations δc is its frequency ν, or equivalently its energy E, for which characteristic values
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are also listed in Table 1. As we discuss in more detail later, any such effect could be

expected to increase with E, and the simplest possibility, for which there is some theoretical

support, is that δc ∝ E/M , where M is some high energy scale. In this case, the relevant

figure of merit for observational tests is the combination

L · E
c · δt (1)

which measures directly the experimental sensitivity to such a high energy scale M. This

sensitivity is also listed in Table 1, where we see that our favoured astrophysical sources are

potentially sensitive to M approaching MP ' 1019 GeV, the mass scale at which gravity

becomes strong. Therefore, these astrophysical sources may begin to challenge any theory

of quantum gravity that predicts such a linear dependence of δc on E. Alternatively, it

could be that δc/c ' (E/M̃)2, in which case the appropriate figure of merit is E
√

L/cδt,

which is also listed in Table 1. In this case, we see that astrophysical observations may be

sensitive to M̃ ∼ 1011 TeV.

Having established the existence of an observational opportunity, we now try to give

some flavour of the theoretical motivation for questioning the constancy of the velocity of

light, in the context of a quantum theory of gravity. A preliminary remark is that any

attempt to quantize gravity canonically must involve a Lorentz-non-invariant separation

of degrees of freedom and the choice of a preferred reference frame. There is a natural

local rest-frame in our approximately Friedman-Robertson-Walker Universe, namely the

comoving frame identified approximately by the cosmic microwave background radiation.

This provides a natural frame in which to consider topological fluctuations in the space-time

background, as might arise from microscopic black holes or other non-perturbative

phenomena in quantum gravity – the so-called space-time foam (Wheeler 1963, Hawking,

Page & Pope 1980, Hawking 1982, Ellis et al. 1984, Ellis, Mavromatos & Nanopoulos

1992, Garay 1998, Ellis, Mavromatos & Nanopoulos 1999).
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Table 1: Observational Sensitivities and Limits on M,M̃

Source Distance E ∆t Sensitivity to M Sensitivity to M̃

GRB 920229 a 3000 Mpc (?) 200 keV 10−2 s 0.6 × 1016 GeV (?) 106 GeV (?)

GRB 980425 a 40 Mpc 1.8 MeV 10−3 s (?) 0.7 × 1016 GeV (?) 3.6× 106 GeV (?)

GRB 920925c a 40 Mpc (?) 200 TeV (?) 200 s 0.4 × 1019 GeV (?) 8.9× 1011 GeV (?)

Mrk 421 b 100 Mpc 2 TeV 280 s > 7× 1016 GeV > 1.2× 1010 GeV

Crab pulsar c 2.2 kpc 2 GeV 0.35 ms > 1.3 × 1015 GeV > 5× 107 GeV

GRB 990123 5000 Mpc 4 MeV 1 s (?) 2× 1015 GeV (?) 2.8× 106 GeV (?)

aAmelino-Camelia et al. 1998, see also Schaefer 1998

bBiller et al. 1998

cKaaret 1999

Table 1: The linear (quadratic) mass-scale parameters M, M̃ are defined by δc/c =

E/M, (E/M̃)2, respectively. The question marks in the Table indicate uncertain

observational inputs. Hard limits are indicated by inequality signs.

Initially in the context of a string approach (Amelino-Camelia et al. 1997), it has

been argued that foamy effects might lead the quantum-gravitational vacuum to behave

as a non-trivial medium, much like a plasma or other environment with non-trivial optical

properties. Another possible example of such behaviour has been proposed within a

canonical approach to quantum gravity (Gambini & Pullin 1999, and it has also been

observed that quantum fluctuations in the light-cone are to be expected (Yu & Ford 1999).

The basic intuition behind such suggestions is that quantum-gravitational fluctuations in

the vacuum must in general be modified by the passage of an energetic particle, and that

this recoil will be reflected in back-reaction effects on the propagating particle itself.
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Three possible optical effects of quantum gravity have been identified. One is a

simple energy-dependent reduction in photon velocity, namely a frequency-dependent

refractive index (Amelino-Camelia et al. 1997, Amelino-Camelia et al. 1998). The

second is a possible difference between the velocities of photons of different helicities,

namely birefringence (Gambini & Pullin 1999). An opportunity for an experimental

test of such a phenomenon has been provided recently by the observations of polarized

radiation from GRB 990510 (Covino et al. 1999, Wijers et al. 1999). The third is a

possible energy-dependent diffusive spread in the velocities of different photons of the same

energy (Ellis, Mavromatos & Nanopoulos 1999, Ford 1995, Yu & Ford 1999). In each case,

the relevant figure of merit would be (1) if the effect is linear in energy.

Most of the rest of this paper constitutes a phenomenological analysis of issues involved

in the search for any such effect, and in disentangling it from phenomena at the source,

which we illustrate by a prototype analysis of the available data on GRBs with established

redshifts, with the results listed in Table 2 and 3. Such an analysis has been made possible

by the data from the BeppoSAX satellite (Boella et al. 1997), which made it possible to

observe afterglows from identified GRBs, and measure their redshifts for the first time.

However, we first provide in Section 2 a simple analysis of the refractive index induced

by one particular recoil model for the quantum-gravitational medium, which provides

some physical flesh for the conceptual skeleton outlined in this Introduction. In Sections 3

and 4 we discuss the propagation of a pulse of electromagnetic radiation produced by an

ultra-relativistic source, as in a GRB explosion. Then, in Section 5 we discuss how one may

fit structures observed in the available GRB data, and analyze their energy-dependence to

look for medium effects. As we shall see, a key issue is to distinguish any such medium

effects from effects at the source. The former should increase when one considers GRBs at

larger distance L or redshift z. We perform in Section 5 a prototype regression analysis of
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the data from the handful of GRBs whose redshifts are currently known. Unsurprisingly,

the present data do not exhibit any significant correlation with z, but the method could

usefully be extended to the hundreds of GRBs whose redshifts are expected to be measured

in coming years. What if such a future analysis should yield a significant effect? It

should certainly not be believed without very critical review, and some of the issues in the

astrophysical modelling of GRBs and the correlation of data from other sources such as

AGNs are reviewed in the concluding Section 6.

2. Quantum-Gravitational Recoil Effects on the Propagation of

Electromagnetic Waves

Our intuitive picture is that the quantum-gravitational vacuum contains quantum

fluctuations with typical sizes ∼ lP ∼ 10−33 cm and time-scales ∼ tP ∼ 10−43 s. We

then hypothesize that particles propagating through the vacuum interact with these

fluctuations, inducing non-trivial recoil and associated vacuum-polarization effects. As

a specific example, we have used the theoretical model of a recoiling D particle in the

quantum-gravitational foam. Its recoil due to scattering by a photon has been argued (Ellis,

Mavromatos & Nanopoulos 1998) to lead to a non-zero gravitational field with a metric of

the form (Ellis et al. 1998):

Gij = δij , G00 = −1, G0i = ε2(Yi + U it)Θε(t) (2)

where 0(i) denote time (space) components. Here, U i is the recoil velocity of the D particle,

which is located at Yi, and ε is a small parameter. The metric (2) implies that D-brane

recoil induces the following perturbation hµν about flat space-time:

h0i = ε2U itΘε(t) (3)

where we have only indicated the only non-zero components of hµν .
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We may identify ε−2 ∼ t at large times, so that the asymptotic form of the gravitational

perturbation takes the form:

h0i ∼ U i (4)

We note that this form corresponds to a breakdown of Lorentz invariance induced by the

propagation of the photon: for symmetry reasons, any perturbation induced by other

models might be expected to take a similar form. We suppose that the light travels

a distance L in time t ∼ ε−2 in the presence of a metric fluctuation h0i given by (4).

The effects of such a field in Maxwell’s equations have been considered previously (Ellis,

Mavromatos & Nanopoulos 1999): here we present an elementary analysis, which does not

require any string or quantum field theory formalism. In fact, is interesting to note that the

interpretation of Maxwell’s equations in the presence of a background gravitational field,

with a non-diagonal component g0i was proposed as an exercise for the reader by Landau

and Lifshitz (Landau & Lifshitz 1975), where a formal analogy with the propagation in a

medium has been noted.

We parametrize the background metric in the form:

G00 ≡ −h, Gi = −G0i

G00
, i = 1, 2, 3 (5)

Maxwell’s equations in this background metric in empty space can be written as (Landau

& Lifshitz 1975):

∇ · B = 0, ∇×H =
1

c

∂

∂t
D = 0,

∇ ·D = 0, ∇× E = −1

c

∂

∂t
B = 0, (6)

where

D =
E√
h

+ H × G, B =
H√
h

+ G ×E (7)

Thus, there is a direct analogy with Maxwell’s equations in a medium with 1/
√

h playing

the rôle of the electric and magnetic permeability. In our case (Ellis, Mavromatos &
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Nanopoulos 1998), h = 1, so one has the same permeability as the classical vacuum. In the

case of the constant metric perturbation (4), after some elementary vector algebra and,

appropriate use of the modified Maxwell’s equations, the equations (6) read:

∇ · E + U · 1

c

∂

∂t
E = 0

∇× B −
(
1− U

2
) 1

c

∂

∂t
E + U × 1

c

∂

∂t
B +

(
U · ∇

)
E = 0

∇ · B = 0

∇× E +
1

c

∂

∂t
B = 0 (8)

Dropping non-leading terms of order U
2

from these equations, one obtains after some

straightforward algebra the following modified wave equations for E and B:

1

c2

∂2

∂2t
B −∇2B − 2

(
U.∇

) 1

c

∂

∂t
B = 0

1

c2

∂2

∂2t
E −∇2E − 2

(
U.∇

) 1

c

∂

∂t
E = 0 (9)

If we consider one-dimensional motion along the x direction, we see that these equations

admit wave solutions of the form

Ex = Ez = 0, Ey(x, t) = E0e
ikx−ωt, Bx = By = 0, Bz(x, t) = B0e

ikx−ωt, (10)

with the modified dispersion relation:

k2 − ω2 − 2Ukω = 0 (11)

Since the sign of U is that of the momentum vector k along the x direction, the dispersion

relation (11) corresponds to subluminal propagation with a refractive index:

c(E) = c
(
1− U

)
+O

(
U

2
)

(12)

where we estimate that

U = O
(

E

MDc2

)
(13)
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with MD the D-particle mass scale. This is in turn given by MD = g−1
s Ms in a string model,

where gs is the string coupling and Ms is the string scale (Ellis, Mavromatos & Nanopoulos

1999). The relation (13) between U and the photon energy has been shown (Lizzi &

Mavromatos 1997, Mavromatos & Szabo 1998, Ellis, Mavromatos & Nanopoulos 1998) to

follow from a rigorous world-sheet analysis of modular divergences in string theory, but

the details need not concern us here. It merely expresses elementary energy-momentum

conservation.

The refractive index effect (13) is a mean-field effect, which implies a delay in the

arrival times of photons, relative to that of an idealized low-energy photon for which

quantum-gravity effects can be ignored, of order:

∆t ∼ L

c
|U | = O

(
EL

MDc3

)
(14)

We have discussed in some detail (Ellis, Mavromatos & Nanopoulos 1999) the quantum

fluctuations about the mean-field solution (14), which would correspond in field theory to

quantum fluctuations in the light cone, and could be induced by higher-genus effects in a

string approach. Such effects would result in stochastic fluctuations in the velocity of light

which are of order

δc ∼ 8gsE/MDc2, (15)

where gs is the string coupling, which varies between O(1) and � 1 in different string

models. Such an effect would motivate the following parametrization of any possible

stochastic spread in photon arrival times:

(δ∆t) =
LE

cΛ
(16)

where the string approach suggests that Λ ∼ MDc2/8gs. We emphasize that, in contrast to

the variation (13) in the refractive index - which refers to photons of different energy - the

fluctuation (16) characterizes the statistical spread in the velocities of photons of the same
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energy. Note that the stochastic effect (16) is suppressed, as compared to the refractive

index mean field effect (13), by an extra power of gs.

3. Propagation of a Pulse of Photons through the Space-Time Foam

GRBs typically emit photons in pulses containing photons with a combination of

different wavelengths, whose sources are believed to be ultrarelativistic shocks with Lorentz

factors γ = O(100) (Piran 1999, Rees 1997). We do not enter here into the details of the

astrophysical modelling of such sources. This is unnecessary for our present exploratory

study, though it may be essential for future more detailed probes of the constancy of the

velocity of light. Instead, here we study a simple generalization of the previous discussion

of monochromatic wave propagation, considering a wave packet of photons emitted with a

Gaussian distribution in the light-cone variable x − ct. Since the distance over which the

ultrarelativistic source moves during the emission is negligible compared with the distance

between the source and the observer, we may represent the source equally well with a

Gaussian distribution in x at the time t = 0. This is adequate to see how such a pulse would

be modified at the observation point at a subsequent time t, because of the propagation

through the space-time foam, as a result of the refractive index effect (11), (12). The

phenomenon is similar to the motion of a wave packet in a conventional dispersive medium,

as discussed extensively in the standard literature.

The Gaussian wavepacket may be expressed at t = 0 as the real part of

f(x) = Ae−x2/(∆x0)2eik0x (17)

with a modulation envelope that is symmetrical about the origin, where it has amplitude A.

The quantity ∆x0 in (17) denotes the root mean square of the spatial spread of the energy

distribution in the packet, which is proportional to |f(x)|2, as is well known. If we assume
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a generic dispersion relation ω = ω(k), a standard analysis using Fourier transforms shows

that at time t the Gaussian wavepacket will have the form:

|f(x, t)|2 =
A2

(1 + α2t2

(∆x0)4
)1/2

e

− (x−cgt)2(
2(∆x0)2[1+ α2t2

(∆x0)4
]

)
(18)

where α ≡ 1
2
(d2ω/d2k), and cg ≡ dω/dk is the group velocity. This is the velocity with

which the peak of the distribution moves in time.

We see immediately in (18) that the quadratic term α in the dispersion relation does

not affect the motion of the peak, but only the spread of the Gaussian wave packet:

|∆x| = ∆x0

(
1 +

α2t2

(∆x0)4

)1/2

(19)

which thus increases with time. The quadratic term α also affects the amplitude of the

wave packet: the latter decreases together with the increase in the spread (19), in such a

way that the integral of |f(x, t)|2 is constant.

In the case of the quantum-gravitational foam scenario (Ellis, Mavromatos &

Nanopoulos 1999, Amelino-Camelia et al. 1997), the dispersion relation assumes the

following form for positive momentum k, in units where c = h̄ = 1:

k = ω
(
1 +

ω

MD

)
or ω = k

(
1− k

MD
+ . . .

)
cg ==

(
1− U

)
= 1−O (ω/MD) ,

α = − 1

MD
+ . . . (20)

where we denote by . . . denotes the higher-order (e.g., quadratic) terms in 1/MD, which are

subleading in this case. Thus the spread of the wave packet due to the non-trivial refractive

index effect described in the previous section is:

|∆x| = ∆x0

(
1 +

t2

M2
D(∆x0)4

)1/2

(21)
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We note that the spread due to the refractive index δc/c ∝ ω is independent of the energy

of the photon to leading order in 1/MD. We also note, therefore, that this effect is distinct

from the stochastic propagation effect, which gives rise to a spread (16) in the wave-packet

that depends on the photon energy ω. For astrophysical sources at cosmological distances

with redshifts z ' 1, and with an initial ∆x0 of a few km, one finds that the correction (21)

is negligible if the quantum-gravity scale MD is of the order of 1019 GeV, namely of order

10−30∆x0. The correction would become of order ∆x0 only if the latter is of order 10−3 m.

Even if one allows MD to be as low as the sensitivities shown in Table 1, this broadening

effect is still negligible for all the sources there, being at most of order 10−22∆x0. Therefore,

in this particular model, the only broadening effect that needs to be considered is the

stochastic quantum-gravitational effect on the refractive index that was introduced at the

end of the previous section.

In the case of a quantum-gravitational foam scenario with a quadratic refractive index:

δc/c ∼ E2, the dispersion relation assumes the following form:

k = ω
(
1 +

ω

M̃

)
or ω = k

1−
(

k

M̃

)2

+ . . .


cg ==

(
1− U

)
= 1−O

(
ω2/M̃2

)
,

α = −3
ω

M̃
+ . . . (22)

where . . . again denote subleading terms. In this case, the spread of the wave packet due to

the non-trivial refractive index effect described above is:

|∆x| = ∆x0

(
1 +

9ω2t2

M̃4(∆x0)4

)1/2

(23)

Once again, if one takes into account the sensitivities shown in Table 1, the maximum

spreading of the pulse is negligible for ∆x0 ∼ 10−3 m, namely at most ∼ 10−33∆x0. Once

again, one would need only to consider the possible stochastic quantum-gravitational effect

on the refractive index. However, since a quadratic dependence is not favoured theoretically,
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we do not pursue it further in the rest of this paper.

4. Cosmological Expansion and Light Propagation

We now discuss the implications of the cosmological expansion for the searches for

a quantum-gravity induced refractive index (14) and a stochastic effect (16). We work

within the general context of Friedman-Robertson-Walker (FRW) metrics, as appropriate

for standard homogeneous and isotropic cosmology (Weinberg 1972). We denote by R the

FRW scale factor, adding a subscript 0 to denote the value at the present era, H0 is the

present Hubble expansion parameter, and the deceleration parameter q0 is defined in terms

of the curvature k of the FRW metric by k = (2q0 − 1)(H2
0R

2
0/c

2), i.e., Ω0 = 2q0.

Motivated by inflation and the cosmic microwave background data, we assume a

Universe with a critical density: Ω0 = 1, k = 0 and q0 = 1/2. We also assume that the

Universe is matter-dominated during all the epoch of interest. Then the scale factor R(t) of

the Universe expands as:

R(t)

R0
=
(

3H0

2

)2/3

t2/3 (24)

and the current age of the Universe is

t0 =
2

3H0
(25)

Clearly no time delay can be larger than this. The relation between redshift and scale factor

is

R(t)/R0 = 1/(1 + z) (26)

Substituting (26) into (24), we find the age of the Universe at any given redshift:

t = (
2

3H0
)

1

(1 + z)3/2
=

t0
(1 + z)3/2

(27)
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Hence, a photon (or other particle) emitted by an object at redshift z has travelled for a

time

t0 − t =
2

3H0

(
1− 1

(1 + z)3/2

)
(28)

The corresponding differential relation between time and redshift is

dt = − 1

H0

1

(1 + z)5/2
dz (29)

This means that during the corresponding infinitesimal time (redshift) interval, a particle

with velocity u travels a distance

u dt = − 1

H0

u

(1 + z)5/2
dz. (30)

Therefore, the total distance L travelled by such a particle since emission at redshift z is

L =
∫ t0

t
udt =

1

H0

∫ z

0

u(z)

(1 + z)5/2
dz (31)

hence, the difference in distances covered by two particles with velocities differing by ∆u is:

∆L =
1

H0

∫ z

0

dz

(1 + z)5/2
(∆u) (32)

where we allow ∆u to depend on z.

In the context of our quantum-gravity-induced refractive-index phenomenon (13), we

are confronted with just such a situation. Consider in that context two photons travelling

with velocities very close to c, whose present-day energies are E1 and E2. At earlier

epochs, their energies would have been blueshifted by a common factor 1 + z. Defining

∆E0 ≡ E1 − E2, we infer from (13) that ∆u = (∆E0 · (1 + z))/M . Inserting this into (32),

we find an induced difference in the arrival time of the two photons given by

∆t =
∆L

c
' 2

H0

[
1− 1

(1 + z)1/2

]
∆E0

M
. (33)

The expression (33) describes the corrections to the refractive index effect (14) due

to the cosmological expansion. For small z << 1, the general expression (33) yields
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∆t ' (z ·∆E0)/(H0 ·M), which agrees with the simple expectation ∆t ' (r ·∆E0)/(c ·M)

for a nearby source at distance r = c(t0 − t) ' z/H0 + . . .. There would be similar

cosmological corrections to the stochastic effect (16), also given by an expression of the form

(33), but with ∆E0 → E, M → Λ, where E is a typical energy scale in a single channel.

In the next Section we present a detailed analysis of the astrophysical data for the five

GRBs listed in Section 2, whose redshifts z are known. We shall be looking for a correlation

with the redshift, calculating a regression measure for the effect (33) and its stochastic

counterpart. Specifically, we shall concentrate on looking for linear dependences of the

“observed” ∆t/∆E0 and the spread ∆σ/E on z̃ ≡ 2 · [1− (1/(1 + z)1/2] ' z − (3/4)z2 + . . ..

5. GRB Data Analysis

We present in this section a model analysis of astrophysical data on GRB pulses that

allows us to place a bound on the phenomena discussed in the previous sections, motivated

by possible non-trivial medium effects of quantum gravity on the propagation of photon

probes. Previously, the data from individual GRBs (Amelino-Camelia et al. 1998, Schaefer

1998), AGNs (Biller et al. 1998) and pulsars (Kaaret 1999) had been considered. Here we

take a further step, analyzing the data from those GRBs whose redshifts are known after

identification of their optical counterparts. This enables us to perform a regression analysis

to seasrch for a possible correlation with redshift (distance), as a first attempt to unravel

source and medium effects. However, this analysis should only be considered as a prototype.

Much more sophisticated fits to the data of individual GRBs could be attempted, but

this would probably be worthwhile only when many more GRB redshifts are known. We

anticipate that this should be the case within a year or two. It should also be emphasized

that, even if an effect correlated with redshift were to be detected, it would still be necessary

to confirm that it was a medium effect rather than an evolutionary effect in the GRB
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sources. This would surely require detailed astrophysical sources and/or a confirmation of a

similar effect in emissions from a different population of distant astrophysical sources, such

as AGNs. However, these topics lie beyond the scope of the present article.

In our searches for the effects described in Sections 2 and 3, we look for short-duration

structures in the time profiles of those GRBs whose redshifts, and hence distances, are

known with some precision. We then make appropriate fits of the astrophysical data in

various energy channels, seeking to constrain differences in the timings and widths of peaks

for different energy ranges. Simultaneity of the peak arrival times at different energies

would place bounds on the induced refractive index (12) of photons. Independence of the

widths of peaks from the channel energies would constrain stochastic fluctuations in the

velocities of photons of the same energy.

The sample of GRB data discussed below have been taken from the BATSE

catalogue (Paciesas et al. 1999) and OSSE data (OSSE 1999). We focus on the following

five GRBs, whose redshifts z are known:

• GRB 970508 with BATSE trigger number 6225 and redshift z=0.835,

• GRB 971214 with BATSE trigger number 6533 and redshift z=3.14,

• GRB 980329 with BATSE trigger number 6665 and redshift z=5.0,

• GRB 980703 with BATSE trigger number 6891 and redshift z=0.966,

• GRB 990123 with BATSE trigger number 7343 and redshift z=1.60.

We recall the energy ranges in which BATSE generally observes photons: Channel 1 in the

energy range (20,50) keV, Channel 2 between (50,100) keV, Channel 3 between (100,300)

keV and Channel 4 above 300 keV. We note that the energies recorded by BATSE are not
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the exact photon energies, and that there is in particular some feedthrough from high-energy

photons into lower-energy channels. This effect can be neglected in the pioneering analysis

that we undertake here, and is sidestepped in our later comparison of BATSE and OSSE

data, but may need to be taken into account in any more detailed follow-up analysis.

The data for each GRB exhibit non-trivial and non-universal structures in time. For

each of the triggers studied, we have fitted one or two of the prominent peaks in each of

the energy channels, with the aim of looking for or constraining their differences in time or

width between different energy channels. We have explored four different functions for the

fits to the different peaks: (i) a Gaussian function characterized by the peak location tp and

width parameter σ, (ii) a Lorentzian function characterized by: A/[(t− tp)
2 + (Γ/2)2] (iii) a

‘tail’ fit with fitting function

N(t) = c1 ∗ (t− t0)
m exp[−(t − t0)

2/(2 · τ 2)], t > t0 (34)

which peaks at tp = τ
√

m + t0, to take into account the tail that tends to appear in the

data after the peak, and (iv) the phenomenological ‘pulse’ model of Norris et al., which has

the functional form (Norris et al. 1996)

N(t) = c1 exp [−(abs(t− tp)/σr,d)
ν ] (35)

where tp is the time at which the photon pulse takes its maximum, σr and σd are the rise

and decay times of the distribution, respectively, and ν gives the sharpness or smoothness

of the pulse at its peak.

We compare in Fig. 1 the four fits to the data for GRB 970508 in Channels 1 and 3.

As seen in Fig. 1, the Gaussian and Lorentzian fits are of lower quality than the ‘tail’ and

‘pulse’ fits, so we concentrate on the latter for the remaining GRBs. Figs. 2 to 5 show the

‘tail’ and ‘pulse’ fits for the remaining GRBs that we study: 971214, 980329, 980703 and

990123, respectively. We compile in Table 2 the values of the ‘tail’ and ‘pulse’ fit parameters
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that we find for all the GRBs. Specifically, we list for both the ‘tail’ and ‘pulse’ fitting

functions the peak time, tp, and the pulse width, σ, defined as half of the width of the pulse

at e−1/2 ' 60% of its maximum value. When applied to the ‘tail’ distribution (34), this

definition yields

σ = ατ
√

m, (36)

where τ and m are defined in (34), and α > 0 is the solution of the equation

ln(1 + α)− 1

2
(1 + α)2 +

1

2
(1 + m−1) = 0, (37)

whilst for the ‘pulse’ distribution this definition yields σ = (σr + σd)/2.

The values recorded in Table 2 may be of more general interest to those modelling

GRBs. However, our main interest here is to compare the values of these parameters in the

different channels, and use their differences to constrain energy-dependent differences and

stochastic fluctuations in photon velocities. As seen in Table 2, we find that the different

fitting functions yield constraints on the propagation parameters that are comparable within

the statistical errors: we use the differences between them as gauges of the systematic

errors.

The only candidate that we see for a systematic trend in the data is a tendency for

pulses in the higher-energy channels to be narrower than in the lower-energy channels. This

effect is seen clearly in Fig. 1 for the case of GRB 970508. However, this narrowing is the

opposite of what we would suggest theoretically, which would be a slowing and broadening

of the peak at higher energies.

We also compare data from Channel 3 of the BATSE detector with the data from

OSSE detector (OSSE 1999), which detects photons in a single channel with energy range

1 < E < 5− 10 MeV. Since the OSSE data are at higher energies, they are more sensitive

to the type of energy-dependent effect of interest to us. The reason we compare the OSSE
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data with Channel 3 of the BATSE data is that the latter are free of contamination by the

data in lower-energy channels, removing one particular possible source of systematic error.

OSSE data are available for the GRBs 980329 and 990123, which we display in Figs. 6 and

7, respectively. The results of our numerical analysis of the arrival times and widths of

identified OSSE pulses are given in Table 3.

In order to investigate the possible fundamental physics significance of this or any

other possible energy-dependent effect, we have compiled the data from all the GRBs we

have studied as functions of the figure of merit z̃ = 1 − 1/(1 + z)1/2 introduced at the end

of Section 4, as seen in Fig. 8 for the locations of the peaks, and in Fig. 9 for the width

parameters. In some cases, there are two BATSE points with the same redshift, reflecting

the fact that we have fitted two peaks in the BATSE data for the corresponding GRB. Also

plotted are the results of the OSSE analysis for the GRBs 980329 and 990123. The inner

error bars in Figs. 8 and 9 are the purely statistical errors produced by the fitting routines,

taking as central values those extracted from the ‘pulse’ fits, which we consider to be the

most reliable. The outer error bars are obtained by adding in quadrature a theoretical

‘systematic’ error, defined by the differences between the values of the fitting parameters

obtained from the ‘tail’ and ‘pulse’ fits. All the numbers used are taken from Tables 2 and

3.

No strong correlation with z is apparent in either Fig. 8 or Fig. 9. We have performed

a regression analysis for linear dependences of the forms

y(z̃) = az̃ + b (38)

for both the time delays y = tp and the width parameters y = σ.

The extracted regression coefficients, defined by r2 ≡ (
∑

i (yest − y)2)/(
∑

i (y − y)2),

where yest is the estimated value given by (38) and y is the mean value of the experimental
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data, are

Time Delays : r2
tp = 0.11, Widths : r2

σ = 0.12, (39)

indicating no significant correlation. As an exercise, we have repeated the regression

analysis omitting individual data points, to see whether any rogue point could be concealing

a significant effect: again, no significant correlation was found.

The formal results of the linear fits shown in Figs. 8 and 9 for the coefficients defined

in (39) are

Time Delays : a = −3.0(5), b = 1.4(2),

Widths : a = −1.6(6), b = 0.3(2). (40)

The negative slopes of these fits are opposite in sign to those expected for the quantum-

gravity refractive-index effect (33) and its stochastic fluctuations. As already discussed, the

regression analysis indicates that neither of the a values should be interpreted as a real

effect, because of the scatters in the data sets. We determine limits on the quantum gravity

scales M and Λ by identifying the magnitudes of the slopes a in (40) with the coefficients

of the z̃ terms in (33) and its equivalent for the width parameter. Using the current value

for the Hubble expansion parameter, H0 = 100 · h0 km/s/Mpc, where 0.6 < h0 < 0.8, we

obtain from the the regression fits of Figs. 8 and 9 the following limits

M >∼ 1015 GeV, Λ >∼ 2× 1015 GeV (41)

on the possible quantum-gravity effects.

6. Conclusions and Prospects

The possibility that the velocity of light might depend on its frequency, i.e., the

corresponding photon energy, is very speculative. Nevertheless, we consider the motivation
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from fundamental physics and the potential significance of any possible observation to be

sufficient to examine this possibility in an entirely phenomenological way. In this paper, we

have attempted to extract the maximum physical information from the few GRBs whose

cosmological redshifts have been measured, and for which detailed information on the time

distributions of photons in different energy channels are available.

As could be expected, we have found no significant effect in the data available, either

in the possible delay times of photons of higher energies, or in the possible stochastic

spreads of velocities of photons with the same energy. If any effect were to be found in

the distributions of photons observed, one would naturally suspect that it could be due to

some source effect. Therefore, we have made a regression analysis, and found no significant

correlation of either time delays of peak spreading with the measured redshifts.

We note that, because of the binning (1.024 s) of the BATSE data set used here. none of

the GRBs studied in Tables 2 and 3 exhibits ‘microbursts’ on timescales ∼ 10−2 s (Scargle,

Norris & Bonnell 1997), such as were considered previously (Amelino-Camelia et al. 1998):

if any were to be discovered in a GRB with known redshift, the sensitivity of the subsequent

analysis would be greatly increased. We expect that the redshifts of many more GRBs

will become known in the near future, as alerts and follow-up observations become more

effective, for example after the launch of the HETE II satellite (Ricker 1998, Hurley 1998).

Also, it is clear that observations of higher-energy photons from GRBs would be very

valuable, since they would provide a longer lever arm in the search for energy-dependent

effects on photon propagation. Such higher-energy observations could be provided by future

space experiments such as AMS (Ahlen et al.) and GLAST (Bloom et al. 1996).

Even if a correlation with redshift of delays in the arrival times of energetic photons

(or of spreads in their arrival times) were to be found, one could not immediately lay the

blame on fundamental physics effects on photon propagation in vacuo. For example, the
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GRB sources might exhibit evolutionary effects that mimic a correlation with redshift.

Alternatively, observational selection effects might mean that the available GRB samples

at low and high redshifts would have different intrinsic properties, e.g., brightness, that

could also create an artificial correlation with redshift. For example, there seems to be a

general grouping of GRBs into ‘short’ bursts, with durations < 2 s, and ‘longer’ bursts.

Because of selection effects, most of the former are believed to be at small redshifts, so

the analysis could become biased if the sources of ‘short’ and ‘long’ bursts had different

intrinsic time-lags between photons in different BATSE channels. In point of fact, all the

GRBs whose redshifts have been determined so far are in the ‘long’ burst category, so this

particular problem may not be important for the data set used here. However, there could

be more subtle selection effects, and any more detailed phenomenological analysis of the

data should proceed hand-in-hand with more sophisticated astrophysical modelling of the

GRB sources.

Moreover, even if the best efforts of the astrophysical modellers failed to exclude a

fundamental physics effect, any such interpretation could be considered established only

if other classes of data were to confirm it. This might require analyses of other types of

astrophysical sources, such as AGNs and/or pulsars. An alternative possibility would be

to consider more carefully laboratory experiments that might be able to reveal possible

variations in the velocity of light.
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GRB 970508: BATSE data Ch. 1 and Ch. 3
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Fig. 1.— Time distribution of the number of photons observed by BATSE in Channels 1 and 3
for GRB 970508, compared with the following fitting functions: (a) Gaussian, (b) Lorentzian,
(c) ‘tail’ function, and (d) ‘pulse’ function. We list below each panel the positions tp and
widths σp (with statistical errors) found for each peak in each fit. We recall that the BATSE
data are binned in periods of 1.024 s.
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GRB 971214: BATSE data Ch. 1 and Ch. 3
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Fig. 2.— Time distribution of the number of photons observed by BATSE in Channels 1 and
3 for GRB 971214, compared with the following fitting functions: (a) ‘tail’ function, and
(b) ‘pulse’ function. We list below each panel the positions tp and widths σp (with statistical
errors) found for each peak in each fit.
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GRB 980329: BATSE data Ch. 1 and Ch. 3
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Fig. 3.— As in fig. 2, but for GRB 980329.
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GRB 980703: BATSE data Ch. 1 and Ch. 3
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Fig. 4.— As in fig. 2, but for GRB 980703.
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GRB 990123: BATSE data Ch. 1 and Ch. 3
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Fig. 5.— As in fig. 2, but for GRB 990123.
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GRB 980329: BATSE data Ch. 3 and OSSE data
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Fig. 6.— Time distribution of the number of photons observed by OSSE and by BATSE in
Channel 3 for GRB 980329, compared with the following fitting functions: (a) ‘tail’ function,
and (b) ‘pulse’ function. We list below each panel the positions tp and widths σp (with
statistical errors) found for each peak in each fit.
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GRB 990123: BATSE data Ch. 3 and OSSE data
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Fig. 7.— As in Fig. 6, but for GRB 990123.
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Fig. 8.— Values of the shifts (∆tp)
f in the timings of the peaks fitted for each GRB studied

using BATSE and OSSE data, plotted versus z̃ = 1 − (1 + z)−1/2, where z is the redshift.
The indicated errors are the statistical errors in the ‘pulse’ fits provided by the fitting routine,
combined with systematic error estimates obtained by comparing the results obtained using the
‘tail’ fitting function. The values obtained by comparing OSSE with BATSE Channel 3 data
have been rescaled by the factor (EBATSE Ch. 3

min −EBATSE Ch. 1
max )/(EOSSE

min −EBATSE Ch. 3
max ), so

as to make them directly comparable with the comparisons of BATSE Channels 1 and 3. The
solid line is the best linear fit.
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Fig. 9.— Values of the changes (∆σ)f in the widths of the peaks fitted for each GRB studied
using BATSE and OSSE data, plotted versus z̃ = 1 − (1 + z)−1/2, where z is the redshift.
The indicated errors are the statistical errors in the ‘pulse’ fits provided by the fitting routine,
combined with systematic error estimates obtained by comparing the results obtained using the
‘tail’ fitting function. The values obtained by comparing OSSE with BATSE Channel 3 data
have been rescaled by the factor (EBATSE Ch. 3

min −EBATSE Ch. 1
max )/(EOSSE

min −EBATSE Ch. 3
max ), so

as to make them directly comparable with the comparisons of BATSE Channels 1 and 3. The
solid line is the best linear fit.
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GRB

970508

GRB

971214

GRB

980329

(I)

GRB

980329

(II)

GRB

980703

GRB

990123

(I)

GRB

990123

(II)

Ch 1 Tail tp (s) 1.1(8) 2.9(5) 3.8(1) 8.50(5) 10.8(6) 24.57(7) 37.6(2)

σ (s) 2(1) 3.9(6) 2.1(1) 2.7(1) 4.6(8) 4.35(9) 7.3(2)

tp (s) 0.7(2) 4.0(6) 5.50(8) 9.2(1) 11.1(3) 24.8(1) 36.0(1)

Pulse σr (s) 1.3(3) 5.8(3) 3.65(9) 1.9(1) 7(1) 6.1(2) 4.6(2)

σd (s) 2.7(3) 3(1) 2.3(2) 2.8(1) 6(1) 6.0(3) 17(1)

σ (s) 2.0(3) 4.4(7) 3.0(2) 2.4(1) 6(1) 6.0(3) 10.8(7)

Ch 3 Tail tp (s) 0.8(2) 2.5(2) 3.81(3) 8.11(1) 12.52(9) 24.63(7) 37.0(4)

σ (s) 1.6(3) 2.6(3) 1.88(4) 2.35(1) 3.8(1) 2.92(7) 4.4(4)

tp (s) 0.7(2) 3.6(2) 5.18(6) 10.06(3) 12.6(2) 24.84(3) 36.08(3)

Pulse σr (s) 1.8(3) 4.6(2) 3.37(6) 2.3(1) 4.3(3) 4.59(4) 2.85(4)

σd (s) 2.5(3) 2.1(2) 5.28(6) 1.071(7) 5.2(3) 4.39(5) 7.48(5)

σ (s) 2.1(3) 3.3(2) 4.33(6) 1.69(7) 4.7(3) 4.49(5) 5.16(5)

∆ Tail ∆tp (s) -0.3(8) -0.4(5) 0.0(1) -0.39(5) 1.7(6) 0.1(1) -0.6(4)

∆σ (s) 0(1) -1.3(7) -0.2(1) -0.3(1) -0.8(8) -1.4(1) -2.9(4)

Pulse ∆tp (s) 0.0(3) -0.4(6) -0.3(1) 0.9(1) 1.5(4) 0.04(3) 0.1(1)

∆σ (s) 0.1(4) -1.1(7) 1.3(2) -0.7(1) -1(1) -1.5(3) -5.6(7)

(∆tp)f (s) 0.0(3)(3) -0.4(6)(0) -0.3(1)(3) 0.9(1)(13) 1.5(4)(2) 0.04(3)(10) 0.1(1)(7)

(∆σ)f (s) 0.1(4)(1) -1.1(7)(2) 1.3(2)(15) -0.7(1)(4) -1(1)(0.2) -1.5(3)(1) -5.6(7)(27)

Table 2: Results of fits to the GRB data from BATSE. For A = tp, σ in each case, the

quantities ∆A denote the differences ∆A ≡ ACh.3 − ACh.1, and the quantities (∆A)f ≡
(∆A)pulse(

√
δA2

(1) + δA2
(3))(δ(∆A)) are our final results for the induced time delays or width

differences of the peaks between BATSE Channels 1 and 3. The first parenthesis in the

latter expression denotes the statistical error (where δA(i) denotes the statistical error in

determining A in the ith channel), whilst the second parenthesis denotes the theoretical

“systematic” error, defined as δ(∆A) ≡
∣∣∣(∆A)pulse − (∆A)tail

∣∣∣.
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GRB

980329

(I)

GRB

980329

(II)

GRB

990123

(I)

GRB

990123

(II)

OSSE Tail tp (s) 3.3(4) 7.70(2) 25.16(1) 38(1)

σ (s) 1.7(4) 2.62(2) 2.90(1) 3(1)

tp (s) 4.33(5) 6.95(4) 25.33(1) 37.08(1)

Pulse σr (s) 2.39(5) 0.74(5) 3.57(2) 2.26(2)

σd (s) 3.6(4) 4.78(7) 3.47(2) 6.07(4)

σ (s) 3.0(3) 2.76(6) 3.52(2) 4.17(3)

BATSE (Ch. 3) Tail tp (s) 3.81(3) 8.11(1) 24.63(7) 37.0(4)

σ (s) 1.88(4) 2.35(1) 2.92(7) 4.4(4)

tp (s) 5.18(6) 10.06(3) 24.84(3) 36.08(3)

Pulse σr (s) 3.37(6) 2.3(1) 4.59(4) 2.85(4)

σd (s) 5.28(6) 1.071(7) 4.39(5) 7.48(5)

σ (s) 4.33(6) 1.69(7) 4.49(5) 5.16(5)

∆ Tail ∆tp (s) -0.5(4) -0.41(2) 0.53(7) 1(1)

∆σ (s) -0.2(4) 0.27(2) -0.02(7) -1(1)

Pulse ∆tp (s) -0.85(8) -3.11(5) 0.49(3) 1.00(3)

∆σ (s) -1.3(3) 1.07(9) -0.97(5) -0.99(6)

(∆tp)f (s) -0.85(8)(35) -3.11(5)(270) 0.49(3)(4) 1.00(3)(0)

(∆σ)f (s) -1.3(3)(11) 1.07(9)(80) -0.97(5)(95) -0.99(6)(1)

Table 3: As in Table 2, but comparing fits to data from OSSE, in the range 1 < E < 5− 10

MeV, and Channel 3 of BATSE.
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