30 research outputs found

    Height and body-mass index trajectories of school-aged children and adolescents from 1985 to 2019 in 200 countries and territories: a pooled analysis of 2181 population-based studies with 65 million participants

    Get PDF
    Summary Background Comparable global data on health and nutrition of school-aged children and adolescents are scarce. We aimed to estimate age trajectories and time trends in mean height and mean body-mass index (BMI), which measures weight gain beyond what is expected from height gain, for school-aged children and adolescents. Methods For this pooled analysis, we used a database of cardiometabolic risk factors collated by the Non-Communicable Disease Risk Factor Collaboration. We applied a Bayesian hierarchical model to estimate trends from 1985 to 2019 in mean height and mean BMI in 1-year age groups for ages 5–19 years. The model allowed for non-linear changes over time in mean height and mean BMI and for non-linear changes with age of children and adolescents, including periods of rapid growth during adolescence. Findings We pooled data from 2181 population-based studies, with measurements of height and weight in 65 million participants in 200 countries and territories. In 2019, we estimated a difference of 20 cm or higher in mean height of 19-year-old adolescents between countries with the tallest populations (the Netherlands, Montenegro, Estonia, and Bosnia and Herzegovina for boys; and the Netherlands, Montenegro, Denmark, and Iceland for girls) and those with the shortest populations (Timor-Leste, Laos, Solomon Islands, and Papua New Guinea for boys; and Guatemala, Bangladesh, Nepal, and Timor-Leste for girls). In the same year, the difference between the highest mean BMI (in Pacific island countries, Kuwait, Bahrain, The Bahamas, Chile, the USA, and New Zealand for both boys and girls and in South Africa for girls) and lowest mean BMI (in India, Bangladesh, Timor-Leste, Ethiopia, and Chad for boys and girls; and in Japan and Romania for girls) was approximately 9–10 kg/m2. In some countries, children aged 5 years started with healthier height or BMI than the global median and, in some cases, as healthy as the best performing countries, but they became progressively less healthy compared with their comparators as they grew older by not growing as tall (eg, boys in Austria and Barbados, and girls in Belgium and Puerto Rico) or gaining too much weight for their height (eg, girls and boys in Kuwait, Bahrain, Fiji, Jamaica, and Mexico; and girls in South Africa and New Zealand). In other countries, growing children overtook the height of their comparators (eg, Latvia, Czech Republic, Morocco, and Iran) or curbed their weight gain (eg, Italy, France, and Croatia) in late childhood and adolescence. When changes in both height and BMI were considered, girls in South Korea, Vietnam, Saudi Arabia, Turkey, and some central Asian countries (eg, Armenia and Azerbaijan), and boys in central and western Europe (eg, Portugal, Denmark, Poland, and Montenegro) had the healthiest changes in anthropometric status over the past 3·5 decades because, compared with children and adolescents in other countries, they had a much larger gain in height than they did in BMI. The unhealthiest changes—gaining too little height, too much weight for their height compared with children in other countries, or both—occurred in many countries in sub-Saharan Africa, New Zealand, and the USA for boys and girls; in Malaysia and some Pacific island nations for boys; and in Mexico for girls. Interpretation The height and BMI trajectories over age and time of school-aged children and adolescents are highly variable across countries, which indicates heterogeneous nutritional quality and lifelong health advantages and risks

    Design of vibrotactile navigation displays for elderly with memory disorders

    No full text
    Social inclusion; the right and possibility for every person to be a member of a group, community, or society as a whole proves to be a significant factor for self-esteem and quality of life. Mobility is one of the major prerequisites for social inclusion and in this paper - which discusses the development of an early prototype as part of a larger project - we address the problem when mobility and hence social inclusion is limited due to a condition known as Mild Cognitive Impairment (MCI). The objective of this study is to enable social interaction by providing assistive navigation that facilitates independence through mobility for the elderly and addresses the following objectives: 1) Landmark to landmark navigation as an alternative to the more standard turn by turn navigation method and 2) Design of vibrotactile signal design for intuitive navigation support. The overall result of the study is that it is feasible to use vibrotactile displays with a sensitive range as support for navigation for the elderly and that landmark to landmark navigation shows viable potential as an alternative to tap on shoulder navigation

    Adaptive Human-Aware Robot Navigation in Close Proximity to Humans

    No full text
    For robots to be able coexist with people in future everyday human environments, they must be able to act in a safe, natural and comfortable way. This work addresses the motion of a mobile robot in an environment, where humans potentially want to interact with it. The designed system consists of three main components: a Kalman filter‐ based algorithm that derives a personʹs state information (position, velocity and orientation) relative to the robot; another algorithm that uses a Case‐Based Reasoning approach to estimate if a person wants to interact with the robot; and, finally, a navigation system that uses a potential field to derive motion that respects the personʹs social zones and perceived interest in interaction

    Climate Change Effects on Runoff, Catchment Phosphorus Loading and Lake Ecological State, and Potential Adaptations

    No full text
    Climate change may have profound effects on phosphorus (P) transport in streams and on take eutrophication. Phosphorus loading from land to streams is expected to increase in northern temperate coastal regions due to higher winter rainfall and to a decline in warm temperate and and climates. Model results suggest a 3.3 to 16.5% increase within the next 100 yr in the P loading of Danish streams depending on soil type and region. In takes, higher eutrophication can be expected, reinforced by temperature-mediated higher P release from the sediment. Furthermore, a shift in fish community structure toward small and abundant plankti-benthivorous fish enhances predator control of zooplankton, resulting in higher phytoplankton biomass. Data from Danish lakes indicate increased chlorophyll a and phytoplankion biomass, higher dominance of dinophytes and cyanobacteria (most notably of nitrogen fixing forms), but lower abundance of diatoms and chrysophytes, reduced size of copepods and cladocerans, and a tendency to reduced zooplankton biomass and zooplankton:phytoplankton biomass ratio when lakes warm. Higher P concentrations are also seen in warm and lakes despite reduced external loading due to increased evapotranspiration and reduced inflow. Therefore, the critical loading for good ecological state in lakes has to be lowered in a future warmer climate. This calls for adaptation measures, which in the northern temperate zone should include improved P cycling in agriculture, reduced loading from point sources, and (re)-establishment of wetlands and riparian buffer zones. In the arid Southern Europe, restrictions on human use of water are also needed, not least on irrigation

    Fast Super Resolution Ultrasound Imaging using the Erythrocytes

    No full text
    Super resolution (SR) imaging is currently conducted using fragile ultrasound contrast agents. This precludes using the full acoustic pressure range, and the distribution of bubbles has to be sparse for them to be isolated for SR imaging. Images have to be acquired over minutes to accumulate enough positions for visualizing the vasculature. A new method for SUper Resolution imaging using the Erythrocytes (SURE) as targets is introduced, which makes it possible to maximize the emitted pressure for good signal-to-noise ratios. The abundant number of erythrocyte targets make acquisition fast, and the SURE images can be acquired in seconds. A Verasonics Vantage 256 scanner was used in combination with a GE L8-18iD linear array probe operated at 10 MHz for a wavelength of 150 μm. A 12 emissions synthetic aperture ultrasound sequence was employed to scan the kidney of a Sprague-Dawley rat for 24 seconds to visualize its vasculature. An ex vivo micro-CT image using the contrast agent Microfil was also acquired at a voxel size of 22.6 μm for validating the SURE images. The SURE image revealed vessels with a size down to 29 μm, five times smaller than the ultrasound wavelength, and the dense grid of vessels in the full kidney was reliably shown for scan times between 1 to 24 seconds. Visually the SURE images revealed the same vasculature as the micro-CT images. SURE images are acquired in seconds rather than minutes without contrast injection for easy clinical use, and they can be measured at full regulatory levels for pressure, intensity, and probe temperature.<br/

    Climate change effects on nitrogen loading from cultivated catchments in Europe: implications for nitrogen retention, ecological state of lakes and adaptation

    No full text
    Climate change might have profound effects on the nitrogen (N) dynamics in the cultivated landscape as well as on N transport in streams and the eutrophication of lakes. N loading from land to streams is expected to increase in North European temperate lakes due to higher winter rainfall and changes in cropping patterns. Scenario (IPCC, A2) analyses using a number of models of various complexity for Danish streams and lakes suggest an increase in runoff and N transport on an annual basis (higher during winter and typically lower during summer) in streams, a slight increase in N concentrations in streams despite higher losses in riparian wetlands, higher absolute retention of N in lakes (but not as percentage of loading), but only minor changes in lake water concentrations. However, when taking into account also a predicted higher temperature there is a risk of higher frequency and abundance of potentially toxic cyanobacteria in lakes and they may stay longer during the season. Somewhat higher risk of loss of submerged macrophytes at increased N and phosphorus (P) loading and a shift to dominance of small-sized fish preying upon the key grazers on phytoplankton may also enhance the risk of lake shifts from clear to turbid in a warmer North European temperate climate. However, it must be emphasised that the prediction of N transport and thus effects is uncertain as the prediction of regional precipitation and changes in land-use is uncertain. By contrast, N loading is expected to decline in warm temperate and arid climates. However, in warm arid lakes much higher N concentrations are currently observed despite reduced external loading. This is due to increased evapotranspiration leading to higher nutrient concentrations in the remaining water, but may also reflect a low-oxygen induced reduction of nitrification. Therefore, the critical N as well as P loading for good ecological state in lakes likely has to be lower in a future warmer climate in both north temperate and Mediterranean lakes. To obtain this objective, adaptation measures are required. In both climate zones the obvious methods are to change agricultural practices for reducing the loss of nutrients to surface waters, to improve sewage treatment and to reduce the storm-water nutrient runoff. In north temperate zones adaptations may also include re-establishment of artificial and natural wetlands, introduction of riparian buffer zones and re-meandering of channelised streams, which may all have a large impact on, not least, the N loading of lakes. In the arid zone, also restrictions on human use of water are urgently needed, not least on the quantity of water used for irrigation purposes
    corecore