24 research outputs found

    Literacy-related professional development preferences of secondary teachers

    Get PDF
    A survey of 100 teachers in one Ontario school board examined their literacy-related professional development preferences. The majority preferred short durations of literacy-related professional development. A small number did not want any literacy-related professional development. The most preferred forms of professional development were shared practice, mentoring, observation of colleagues, and collaborative lesson development. Preferences for form and content of professional development varied between subject areas and course types. Un sondage a été réalisé auprès de 100 enseignants d’une commission scolaire ontarienne afin de déterminer leurs préférences en matière de perfectionnement professionnel lié à l’alphabétisme. La majorité des enseignants sondés préfèrent des cours de courte durée de perfectionnement professionnel lié à l’alphabétisme. Un petit nombre ne souhaite suivre aucun cours de perfectionnement professionnel lié à l’alphabétisme. Les formes préférées de perfectionnement professionnel sont les pratiques partagées, le mentorat, l’observation des collègues et le développement collaboratif de systèmes éducatifs. Les préférences en matière de forme et de contenu du perfectionnement professionnel varient fonction de la discipline et du genre de cours.

    Discovery of an eclipsing dwarf nova in the ancient nova shell Te 11

    Get PDF
    We report on the discovery of an eclipsing dwarf nova (DN) inside the peculiar, bilobed nebula Te 11. Modelling of high-speed photometry of the eclipse finds the accreting white dwarf to have a mass 1.18 M⊙ and temperature 13 kK. The donor spectral type of M2.5 results in a distance of 330 pc, colocated with Barnard's loop at the edge of the Orion-Eridanus superbubble. The perplexing morphology and observed bow shock of the slowly expanding nebula may be explained by strong interactions with the dense interstellar medium in this region. We match the DN to the historic nova of 483 CE in Orion and postulate that the nebula is the remnant of this eruption. This connection supports the millennia time-scale of the post-nova transition from high to low mass-transfer rates. Te 11 constitutes an important benchmark system for CV and nova studies as the only eclipsing binary out of just three DNe with nova shells

    Accreting Millisecond X-Ray Pulsars

    Full text link
    Accreting Millisecond X-Ray Pulsars (AMXPs) are astrophysical laboratories without parallel in the study of extreme physics. In this chapter we review the past fifteen years of discoveries in the field. We summarize the observations of the fifteen known AMXPs, with a particular emphasis on the multi-wavelength observations that have been carried out since the discovery of the first AMXP in 1998. We review accretion torque theory, the pulse formation process, and how AMXP observations have changed our view on the interaction of plasma and magnetic fields in strong gravity. We also explain how the AMXPs have deepened our understanding of the thermonuclear burst process, in particular the phenomenon of burst oscillations. We conclude with a discussion of the open problems that remain to be addressed in the future.Comment: Review to appear in "Timing neutron stars: pulsations, oscillations and explosions", T. Belloni, M. Mendez, C.M. Zhang Eds., ASSL, Springer; [revision with literature updated, several typos removed, 1 new AMXP added

    The Evolution of Compact Binary Star Systems

    Get PDF
    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure

    The space density and X-ray luminosity function of non-magnetic cataclysmic variables

    Full text link
    We combine two complete, X-ray flux-limited surveys, the ROSAT Bright Survey (RBS) and the ROSAT North Ecliptic Pole (NEP) survey, to measure the space density (\rho) and X-ray luminosity function (\Phi) of non-magnetic CVs. The combined survey has a flux limit of F_X \ga 1.1 \times 10^{-12} erg cm^{-2}s^{-1} over most of its solid angle of just over 2\pi, but is as deep as \simeq 10^{-14} erg cm^{-2}s^{-1} over a small area. The CV sample that we construct from these two surveys contains 20 non-magnetic systems. We carefully include all sources of statistical error in calculating \rho and \Phi by using Monte Carlo simulations; the most important uncertainty proves to be the often large errors in distances estimates. If we assume that the 20 CVs in the combined RBS and NEP survey sample are representative of the intrinsic population, the space density of non-magnetic CVs is 4^{+6}_{-2} \times 10^{-6} pc^{-3}. We discuss the difficulty in measuring \Phi in some detail---in order to account for biases in the measurement, we have to adopt a functional form for \Phi. Assuming that the X-ray luminosity function of non-magnetic CVs is a truncated power law, we constrain the power law index to -0.80 \pm 0.05. It seems likely that the two surveys have failed to detect a large, faint population of short-period CVs, and that the true space density may well be a factor of 2 or 3 larger than what we have measured; this is possible, even if we only allow for undetected CVs to have X-ray luminosities in the narrow range 28.7< log(L_X/erg\,s^{-1})<29.7. However, \rho as high as 2 \times 10^{-4} pc^{-3} would require that the majority of CVs has X-ray luminosities below L_X = 4 \times 10^{28} erg s^{-1} in the 0.5--2.0 keV band.Comment: MNRAS, accepted. 14 pages, 8 figure

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Spectroscopic Survey of the Galaxy with Gaia II. The expected science yield from the Radial Velocity Spectrometer

    Get PDF
    The Gaia mission is designed as a Galaxy explorer, and will measure simultaneously, in a survey mode, the five or six phase space parameters of all stars brighter than 20th magnitude, as well as providing a description of their astrophysical characteristics. These measurements are obtained by combining an astrometric instrument with micro-arcsecond capabilities, a photometric system giving the magnitudes and colours in 15 bands and a medium resolution spectrograph named the Radial Velocity Spectrometer (RVS). The latter instrument will produce spectra in the 848 to 874 nm wavelength range, with a resolving power R = 11 500, from which radial velocities, rotational velocities, atmospheric parameters and abundances can be derived. A companion paper (Katz et al. 2004) presents the characteristics of the RVS and its performance. This paper details the outstanding scientific impact of this important part of the Gaia satellite on some key open questions in present day astrophysics. The unbiased and simultaneous acquisition of multi-epoch radial velocities and individual abundances of key elements in parallel with the astrometric parameters is essential for the determination of the dynamical state and formation history of our Galaxy. Moreover, for stars brighter than V=15, the resolving power of the RVS will give information about most of the effects which influence the position of a star in the Hertzsprung-Russell diagram, placing unprecedented constraints on the age, internal structure and evolution of stars of all types. Finally, the RVS multi-epoch observations are ideally suited to the identification, classification and characterisation of the many types of double, multiple and variable stars.Comment: 33 pages, 11 figures, in press at MNRAS. Figs 1, 3 and 9 included at reduced resolution; available in full resolution at http://www.blackwell-synergy.com/doi/pdf/10.1111/j.1365-2966.2005.09012.

    Discovery of close binary central stars in the planetary nebulae NGC 6326 and NGC 6778

    Get PDF
    Original article can be found at : http://www.aanda.org/ Copyright The European Southern ObservatoryWe present observations proving the close binary nature of the central stars belonging to the planetary nebulae (PNe) NGC 6326 and NGC 6778. Photometric monitoring reveals irradiated lightcurves with orbital periods of 0.372 and 0.1534 days, respectively, constituting firm evidence that they passed through a common-envelope (CE) phase. Unlike most surveys for close binary central stars (CSPN) however, the binary nature of NGC 6326 was first revealed spectroscopically and only later did photometry obtain an orbital period. Gemini South observations revealed a large 160 km/s shift between the nebula and emission lines of C III and N III well known to originate from irradiated atmospheres of main-sequence companions. These so-called weak emission lines are fairly common in PNe and measurement of their radial velocity shifts in spectroscopic surveys could facilitate the construction of a statistically significant sample of post-CE nebulae. There is growing evidence that this process can be further accelerated by preselecting nebulae with traits of known post-CE nebulae. Both NGC 6326 and NGC 6778 were selected for their rich attribution of low-ionisation filaments and collimated outflows, thereby strengthening the connection between these traits and post-CE CSPN.Peer reviewe

    The feedback of massive stars on interstellar astrochemical processes

    Full text link
    Astrochemistry is a discipline that studies physico-chemical processes in astrophysical environments. Such environments are characterized by conditions that are substantially different from those existing in usual chemical laboratories. Models which aim to explain the formation of molecular species in interstellar environments must take into account various factors, including many that are directly, or indirectly related to the populations of massive stars in galaxies. The aim of this paper is to review the influence of massive stars, whatever their evolution stage, on the physico-chemical processes at work in interstellar environments. These influences include the ultraviolet radiation field, the production of high energy particles, the synthesis of radionuclides and the formation of shocks that permeate the interstellar medium
    corecore