231 research outputs found

    Lopsidedness in dwarf irregular galaxies

    Get PDF
    We quantify the amplitude of the lopsidedness, the azimuthal angular asymmetry index, and the concentration of star forming regions, as represented by the distribution of the Hα\alpha emission, in a sample of 78 late-type irregular galaxies. We bin the observed galaxies in two groups representing blue compact galaxies (BCDs) and low surface brightness dwarf galaxies (LSBs). The light distribution is analysed with a novel algorithm, which allows detection of details in the light distribution pattern. We find that while the asymmetry of the underlying continuum light, representing the older stellar generations, is relatively small, the Hα\alpha emission is very asymmetric and is correlated in position angle with the continuum light. We test a model of random star formation over the extent of a galaxy by simulating HII regions in artificial dwarf galaxies. The implication is that random star formation over the full extent of a galaxy may be generated in LSB dwarf-irregular galaxies but not in BCD galaxies.Comment: 42 pages, LaTex. Accepted by: MNRAS, 13 Mar 200

    Mapping the Galactic Halo. V. Sgr dSph Tidal Debris 60 degrees from the Main Body

    Full text link
    As part of the Spaghetti Project Survey (SPS) we have detected a concentration of giant stars well above expectations for a smooth halo model. The position (l~350, b~50) and distance (~50 kpc) of this concentration match those of the Northern over-density detected by SDSS (Yanny et al. 2000, Ivezic et al. 2000). We find additional evidence for structure at ~80 kpc in the same direction. We present radial velocities for many of these stars, including the first published results from the 6.5m Magellan telescope. The radial velocities for stars in these structures are in excellent agreement with models of the dynamical evolution of the Sgr dwarf tidal debris, whose center is 60 degrees away. The metallicity of stars in these streams is lower than that of the main body of the Sgr dwarf, which may indicate a radial metallicity gradient prior to disruption.Comment: 10 pages, 3 figures accepted in Astrophysical Journal Letter

    On the Spatial Distribution of Stellar Populations in the Large Magellanic Cloud

    Get PDF
    We measure the angular correlation function of stars in a region of the Large Magellanic Cloud (LMC) that spans 2 degrees by 1.5 degrees. We find that the correlation functions of stellar populations are represented well by exponential functions of the angular separation for separations between 2 and 40 arcmin (corresponding to ~ 30 pc and 550 pc for an LMC distance of 50 kpc). The inner boundary is set by the presence of distinct, highly correlated structures, which are the more familiar stellar clusters, and the outer boundary is set by the observed region's size and the presence of two principal centers of star formation within the region. We also find that the normalization and scale length of the correlation function changes systematically with the mean age of the stellar population. The existence of positive correlation at large separations (~300 pc), even in the youngest population, argues for large-scale hierarchical structure in current star formation. The evolution of the angular correlation toward lower normalizations and longer scale lengths with stellar age argues for the dispersion of stars with time. We show that a simple, stochastic, self-propagating star formation model is qualitatively consistent with this behavior of the correlation function.Comment: 30 pages, 13 Figures. Scheduled for publication in AJ in June 199
    • …
    corecore