167 research outputs found

    The VLA Frontier Field Survey: A Comparison of the Radio and UV/Optical Size of 0.3 â‰Č z â‰Č 3 Star-forming Galaxies

    Get PDF
    o investigate the growth history of galaxies, we measure the rest-frame radio, ultraviolet (UV), and optical sizes of 98 radio-selected, star-forming galaxies (SFGs) distributed over 0.3 â‰Č z â‰Č 3 with a median stellar mass of log(M⋆/M⊙)≈10.4\mathrm{log}({M}_{\star }/{M}_{\odot })\approx 10.4. We compare the size of galaxy stellar disks, traced by rest-frame optical emission, relative to the overall extent of star formation activity that is traced by radio continuum emission. Galaxies in our sample are identified in three Hubble Frontier Fields: MACS J0416.1−2403, MACS J0717.5+3745, and MACS J1149.5+2223. Radio continuum sizes are derived from 3 and 6 GHz radio images (â‰Č0farcs6 resolution, ≈0.9 ÎŒJy beam−1 noise level) from the Karl G. Jansky Very Large Array. Rest-frame UV and optical sizes are derived using observations from the Hubble Space Telescope and the Advanced Camera for Surveys and Wide Field Camera 3 instruments. We find no clear dependence between the 3 GHz radio size and stellar mass of SFGs, which contrasts with the positive correlation between the UV/optical size and stellar mass of galaxies. Focusing on SFGs with log(M⋆/M⊙)>10\mathrm{log}({M}_{\star }/{M}_{\odot })\gt 10, we find that the radio/UV/optical emission tends to be more compact in galaxies with high star formation rates (≳100 M⊙ yr−1), suggesting that a central, compact starburst (and/or an active galactic nucleus) resides in the most luminous galaxies of our sample. We also find that the physical radio/UV/optical size of radio-selected SFGs with log(M⋆/M⊙) > 10 increases by a factor of 1.5–2 from z ≈ 3 to z ≈ 0.3, yet the radio emission remains two to three times more compact than that from the UV/optical. These findings indicate that these massive, radio-selected SFGs at 0.3 â‰Č z â‰Č 3 tend to harbor centrally enhanced star formation activity relative to their outer disks

    Variable broad lines and outflow in the weak blazar PBC J2333.9-2343

    Get PDF
    IndexaciĂłn: Scopus; Scielo.Funding text #1 1Instituto de FĂ­sica y AstronomĂ­a, Facultad de Ciencias, Universidad de ValparaĂ­so, Gran Bretaña 1111, Playa Ancha, ValparaĂ­so, Chile 2INAF – Istituto di Astrofisica e Planetologia Spaziali di Roma (IAPS-INAF), Via del Fosso del Cavaliere 100, I-00133 Roma, Italy 3INAF – Osservatorio Astronomico di Roma, via Frascati 33, I-00078 Monte Porzio Catone, Italy 4Excellence Cluster Universe, Technische UniversitĂ€t MĂŒnchen, Boltzmannstr. 2, D-85748, Garching, Germany 5European Southern Observatory, Karl-Schwarzschild-Str 2, D-85748 Garching b. MĂŒnchen, Germany 6Instituto Nacional de AstrofĂ­sica, Óptica y ElectrĂłnica, Apartado Postal 51-216, 72000 Puebla, MĂ©xico 7Argelander Institute for Astronomy, University of Bonn, Auf dem HĂŒgel 71, D-53121 Bonn, Germany 8International Max Planck Research School of Astronomy and Astrophysics at the Universities of Bonn and Cologne, Auf dem HĂŒgel 69, D-53121 Bonn, Germany 9INAF – Osservatorio di Astrofisica e Scienza dello Spazio, via Gobetti 93/3, I-40129 Bo...View all Funding text #2 We acknowledge the referee, M. Villar MartĂ­n, for her comments and suggestions that helped to improve the paper. This work made use of data supplied by the UK Swift Science Data Centre at the University of Leicester, the NASA/IPAC extragalactic database (NED), the STARLIGHT code, and the IRAF software. Based upon observations carried out at the Observatorio AstronĂłmico Nacional on the Sierra San Pedro MĂĄrtir (OAN-SPM), Baja California, MĂ©xico. LHG and FP acknowledge the ASI/INAF agreement number 2013-023-R1, LHG partial support from FONDECYT through grant 3170527, MP from ESSTI under the MoST, and from MINECO through research projects AYA2013-42227-P and AYA2016-76682-C3-1-P (AEI/FEDER, UE), LHG and SC from the Spanish grant AYA2013-42227-P, VC by CONACyT research grant 280789, EFJA from the Collaborative Research Center 956, subproject A1, funded by DFG, and GV from the DFG Cluster of Excellence ‘Origin and Structure of the Universe’ (www.universe-cluster.de).PBC J2333.9-2343 is a peculiar active nucleus with two giant radio lobes and a weak blazarlike nucleus at their centre. In this work we show new optical, ultraviolet (UV), and X-ray data taken from the San Pedro MĂĄrtir telescope, the New Technology Telescope, NTT/EFOSC2, and the Swift/XRT satellite. The source is highly variable at all frequencies, in particular the strongest variations are found in the broad Hα component with a flux increase of 61±4 per cent between 2009 and 2016, following the X-ray flux increase of 62±6 per cent between 2010 and 2016. We also detected a broad HÎČ component in 2016, making the optical classification change from type 1.9 to type 1.8 in 1 yr. We have also detected a broad component of the [OIII]λ5007 line, which is blue-shifted and of high velocity, suggesting an origin from a highly disturbed medium, possibly an outflow. The line flux variability and broad widths are indicative of a jet that is, at least in part, responsible for the ionization of the broad line region (BLR) and narrow line region (NLR). © 2018 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society.https://academic.oup.com/mnras/article-abstract/478/4/4634/4999938?redirectedFrom=fulltex

    Tissue culture of ornamental cacti

    Full text link

    Global maps of soil temperature.

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km <sup>2</sup> resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km <sup>2</sup> pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Measurement of the cross section for isolated-photon plus jet production in pp collisions at √s=13 TeV using the ATLAS detector

    Get PDF
    The dynamics of isolated-photon production in association with a jet in proton–proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb−1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements

    Measurement of the View the tt production cross-section using eÎŒ events with b-tagged jets in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This paper describes a measurement of the inclusive top quark pair production cross-section (σttÂŻ) with a data sample of 3.2 fb−1 of proton–proton collisions at a centre-of-mass energy of √s = 13 TeV, collected in 2015 by the ATLAS detector at the LHC. This measurement uses events with an opposite-charge electron–muon pair in the final state. Jets containing b-quarks are tagged using an algorithm based on track impact parameters and reconstructed secondary vertices. The numbers of events with exactly one and exactly two b-tagged jets are counted and used to determine simultaneously σttÂŻ and the efficiency to reconstruct and b-tag a jet from a top quark decay, thereby minimising the associated systematic uncertainties. The cross-section is measured to be: σttÂŻ = 818 ± 8 (stat) ± 27 (syst) ± 19 (lumi) ± 12 (beam) pb, where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the integrated luminosity and the LHC beam energy, giving a total relative uncertainty of 4.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. A fiducial measurement corresponding to the experimental acceptance of the leptons is also presented

    A search for resonances decaying into a Higgs boson and a new particle X in the XH → qqbb final state with the ATLAS detector

    Get PDF
    A search for heavy resonances decaying into a Higgs boson (H) and a new particle (X) is reported, utilizing 36.1 fb−1 of proton–proton collision data at collected during 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. The particle X is assumed to decay to a pair of light quarks, and the fully hadronic final state is analysed. The search considers the regime of high XH resonance masses, where the X and H bosons are both highly Lorentz-boosted and are each reconstructed using a single jet with large radius parameter. A two-dimensional phase space of XH mass versus X mass is scanned for evidence of a signal, over a range of XH resonance mass values between 1 TeV and 4 TeV, and for X particles with masses from 50 GeV to 1000 GeV. All search results are consistent with the expectations for the background due to Standard Model processes, and 95% CL upper limits are set, as a function of XH and X masses, on the production cross-section of the resonance

    Search for TeV-scale gravity signatures in high-mass final states with leptons and jets with the ATLAS detector at sqrt [ s ] = 13TeV

    Get PDF
    A search for physics beyond the Standard Model, in final states with at least one high transverse momentum charged lepton (electron or muon) and two additional high transverse momentum leptons or jets, is performed using 3.2 fb−1 of proton–proton collision data recorded by the ATLAS detector at the Large Hadron Collider in 2015 at √s = 13 TeV. The upper end of the distribution of the scalar sum of the transverse momenta of leptons and jets is sensitive to the production of high-mass objects. No excess of events beyond Standard Model predictions is observed. Exclusion limits are set for models of microscopic black holes with two to six extra dimensions

    Search for dark matter produced in association with a hadronically decaying vector boson in pp collisions at sqrt (s) = 13 TeV with the ATLAS detector

    Get PDF
    A search is presented for dark matter produced in association with a hadronically decaying W or Z boson using 3.2 fb−1 of pp collisions at View the MathML sources=13 TeV recorded by the ATLAS detector at the Large Hadron Collider. Events with a hadronic jet compatible with a W or Z boson and with large missing transverse momentum are analysed. The data are consistent with the Standard Model predictions and are interpreted in terms of both an effective field theory and a simplified model containing dark matter

    Measurement of the double-differential high-mass Drell-Yan cross section in pp collisions at √s = 8 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of the double-differential cross section for the Drell-Yan Z/γ∗ → ℓ+ℓ− and photon-induced γγ → ℓ+ℓ− processes where ℓ is an electron or muon. The measurement is performed for invariant masses of the lepton pairs, mℓℓ, between 116 GeV and 1500 GeV using a sample of 20.3 fb−1 of pp collisions data at centre-of-mass energy of √s = 8 TeV collected by the ATLAS detector at the LHC in 2012. The data are presented double differentially in invariant mass and absolute dilepton rapidity as well as in invariant mass and absolute pseudorapidity separation of the lepton pair. The single-differential cross section as a function of mℓℓ is also reported. The electron and muon channel measurements are combined and a total experimental precision of better than 1% is achieved at low mℓℓ. A comparison to next-to-next-to-leading order perturbative QCD predictions using several recent parton distribution functions and including next-to-leading order electroweak effects indicates the potential of the data to constrain parton distribution functions. In particular, a large impact of the data on the photon PDF is demonstrated
    • 

    corecore