25 research outputs found

    The ocean sampling day consortium

    Get PDF
    Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world’s oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and their embedded functional traits

    A communal catalogue reveals Earth's multiscale microbial diversity

    Get PDF
    Our growing awareness of the microbial world's importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth's microbial diversity.Peer reviewe

    A communal catalogue reveals Earth’s multiscale microbial diversity

    Get PDF
    Our growing awareness of the microbial world’s importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth’s microbial diversity

    The Ocean Sampling Day Consortium

    Get PDF
    Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world’s oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and their embedded functional traits

    Randomized trial of lacosamide versus fosphenytoin for nonconvulsive seizures

    No full text
    © 2018 American Neurological Association Objective: The optimal treatment of nonconvulsive seizures in critically ill patients is uncertain. We evaluated the comparative effectiveness of the antiseizure drugs lacosamide (LCM) and fosphenytoin (fPHT) in this population. Methods: The TRENdS (Treatment of Recurrent Electrographic Nonconvulsive Seizures) study was a noninferiority, prospective, multicenter, randomized treatment trial of patients diagnosed with nonconvulsive seizures (NCSs) by continuous electroencephalography (cEEG). Treatment was randomized to intravenous (IV) LCM 400mg or IV fPHT 20mg phenytoin equivalents/kg. The primary endpoint was absence of electrographic seizures for 24 hours as determined by 1 blinded EEG reviewer. The frequency with which NCS control was achieved in each arm was compared, and the 90% confidence interval (CI) was determined. Noninferiority of LCM to fPHT was to be concluded if the lower bound of the CI for relative risk was \u3e0.8. Results: Seventy-four subjects were enrolled (37 LCM, 37 fPHT) between August 21, 2012 and December 20, 2013. The mean age was 63.6 years; 38 were women. Seizures were controlled in 19 of 30 (63.3%) subjects in the LCM arm and 16 of 32 (50%) subjects in the fPHT arm. LCM was noninferior to fPHT (p = 0.02), with a risk ratio of 1.27 (90% CI = 0.88–1.83). Treatment emergent adverse events (TEAEs) were similar in both arms, occurring in 9 of 35 (25.7%) LCM and 9 of 37 (24.3%) fPHT subjects (p = 1.0). Interpretation: LCM was noninferior to fPHT in controlling NCS, and TEAEs were comparable. LCM can be considered an alternative to fPHT in the treatment of NCSs detected on cEEG. Ann Neurol 2018;83:1174–1185

    Development and Feasibility Testing of a Critical Care EEG Monitoring Database for Standardized Clinical Reporting and Multicenter Collaborative Research

    No full text
    © 2015 by the American Clinical Neurophysiology Society. Purpose: The rapid expansion of the use of continuous critical care electroencephalogram (cEEG) monitoring and resulting multicenter research studies through the Critical Care EEG Monitoring Research Consortium has created the need for a collaborative data sharing mechanism and repository. The authors describe the development of a research database incorporating the American Clinical Neurophysiology Society standardized terminology for critical care EEG monitoring. The database includes flexible report generation tools that allow for daily clinical use. Methods: Key clinical and research variables were incorporated into a Microsoft Access database. To assess its utility for multicenter research data collection, the authors performed a 21-center feasibility study in which each center entered data from 12 consecutive intensive care unit monitoring patients. To assess its utility as a clinical report generating tool, three large volume centers used it to generate daily clinical critical care EEG reports. Results: A total of 280 subjects were enrolled in the multicenter feasibility study. The duration of recording (median, 25.5 hours) varied significantly between the centers. The incidence of seizure (17.6%), periodic/rhythmic discharges (35.7%), and interictal epileptiform discharges (11.8%) was similar to previous studies. The database was used as a clinical reporting tool by 3 centers that entered a total of 3,144 unique patients covering 6,665 recording days. Conclusions: The Critical Care EEG Monitoring Research Consortium database has been successfully developed and implemented with a dual role as a collaborative research platform and a clinical reporting tool. It is now available for public download to be used as a clinical data repository and report generating tool

    The protein kinase A anchoring protein mAKAP coordinates two integrated cAMP effector pathways

    No full text
    Cyclic adenosine 3′, 5′ monophosphate (cAMP) is a ubiquitous mediator of intracellular signalling events. It principally acts through stimulation of cAMP-dependent protein kinases (PKA)1, 2 but also activates certain ion-channels and guanine nucleotide exchange factors (Epacs)3. Metabolism of cAMP is catalyzed by phosphodiesterases (PDEs)4, 5. A cAMP-responsive signalling complex maintained by the muscle specific A-kinase anchoring protein (mAKAP) that includes PKA, PDE4D3 and Epac1 was identified. These intermolecular interactions facilitate the dissemination of distinct cAMP signals through each effector protein. Anchored PKA stimulates PDE4D3 to reduce local cAMP concentrations whereas an mAKAP-associated ERK5 module suppresses PDE4D3. PDE4D3 also functions as an adapter protein that recruits Epac1, an exchange factor for the small GTPase Rap-1 to enable cAMP-dependent attenuation of ERK5. Pharmacological and molecular manipulation of the mAKAP complex show that anchored ERK5 can induce cardiomyocyte hypertrophy. Thus, two coupled cAMP-dependent feedback loops are coordinated within the context of the mAKAP complex, suggesting that local control of cAMP signalling by AKAPs is more intricate than previously appreciated
    corecore