1,797 research outputs found
Interactive Actor Analysis for Rural Water Management in The Netherlands
Recent developments in the policy sciences emphasize the social environment
in which decisions are made. The ‘network metaphor’ is often used to describe
the key role of interactions between interdependent actors involved in decision
making. These interactions take place in a policy arena drawn up by actors with an
interest in and control over decisions on the issues addressed. Interdependencies,
caused by the need for actors to increase their means of realizing objectives, are
the driving force behind these interactions. Dependency relations are of special
interest to water management and river basin management because of the fundamental
asymmetrical interdependencies that exist in river basins between upstream
and downstream stakeholders. Coleman’s linear system of action models decision
making process involving dependencies between multiple stakeholders as exchange
of control over issues, while interactions are required to negotiate exchanges of
control. We developed an interactive method for actor analysis based on Coleman’s
linear system of action and applied it to the national rural water management policy
domain in The Netherlands. The method is firmly rooted in mathematical sociology
and defies the criticism that methods for actor and stakeholder analysis do not specify
a theoretical basis explaining the causal relations between the variables analyzed and
policy change. With the application to the rural water management policy arena we
intended to increase our insight into the practical applicability of this analyticmethod
in an interactive workshop, the acceptability of the approach for the participating
actors, its contribution to the process of decision making and our understanding of
the rural water management policy arena in The Netherlands. We found that the
Association of Water Authorities, the Ministry of Public Works and the Ministry of
Agriculture are the most powerful actor in the policy domain, while governance and
cost and benefits of rural water management are the most salient issues. Progress
in policy development for rural water management is probably most promising for the issues governance, costs and benefits, safety and rural living conditions through
improved interaction between the Association of Water Authorities, the Ministry of
Agriculture and the Rural Credit Bank. Besides these analytic results the interactive
approach implemented increased the participants understanding of their dependency
on other actors in the rural water management policy domain and supported them
in developing a sound perspective on their dependency position. We concluded
that the method developed is acceptable to real-world policy decision makers, can
successfully be applied in an interactive setting, potentially contributes to the process
of decision making by increasing the participants understanding of their dependency
position, has the potential to delivers valuable advice for future decision-making and
increases our understanding of policy development for rural water management in
general
Etiological Profile and Treatment Outcome of Epistaxis at a Tertiary Care Hospital in Northwestern Tanzania: A Prospective Review of 104 Cases.
Epistaxis is the commonest otolaryngological emergency affecting up to 60% of the population in their lifetime, with 6% requiring medical attention. There is paucity of published data regarding the management of epistaxis in Tanzania, especially the study area. This study was conducted to describe the etiological profile and treatment outcome of epistaxis at Bugando Medical Centre, a tertiary care hospital in Northwestern Tanzania. This was a prospective descriptive study of the cases of epistaxis managed at Bugando Medical Centre from January 2008 to December 2010. Data collected were analyzed using SPSS computer software version 15. A total of 104 patients with epistaxis were studied. Males were affected twice more than the females (2.7:1). Their mean age was 32.24 ± 12.54 years (range 4 to 82 years). The modal age group was 31-40 years. The commonest cause of epistaxis was trauma (30.8%) followed by idiopathic (26.9%) and hypertension (17.3%). Anterior nasal bleeding was noted in majority of the patients (88.7%). Non surgical measures such as observation alone (40.4%) and anterior nasal packing (38.5%) were the main intervention methods in 98.1% of cases. Surgical measures mainly intranasal tumor resection was carried out in 1.9% of cases. Arterial ligation and endovascular embolization were not performed. Complication rate was 3.8%. The overall mean of hospital stay was 7.2 ± 1.6 days (range 1 to 24 days). Five patients died giving a mortality rate of 4.8%. Trauma resulting from road traffic crush (RTC) remains the most common etiological factor for epistaxis in our setting. Most cases were successfully managed with conservative (non-surgical) treatment alone and surgical intervention with its potential complications may not be necessary in most cases and should be the last resort. Reducing the incidence of trauma from RTC will reduce the incidence of emergency epistaxis in our centre
Polycation-π Interactions Are a Driving Force for Molecular Recognition by an Intrinsically Disordered Oncoprotein Family
Molecular recognition by intrinsically disordered proteins (IDPs) commonly involves specific localized contacts and target-induced disorder to order transitions. However, some IDPs remain disordered in the bound state, a phenomenon coined "fuzziness", often characterized by IDP polyvalency, sequence-insensitivity and a dynamic ensemble of disordered bound-state conformations. Besides the above general features, specific biophysical models for fuzzy interactions are mostly lacking. The transcriptional activation domain of the Ewing's Sarcoma oncoprotein family (EAD) is an IDP that exhibits many features of fuzziness, with multiple EAD aromatic side chains driving molecular recognition. Considering the prevalent role of cation-π interactions at various protein-protein interfaces, we hypothesized that EAD-target binding involves polycation- π contacts between a disordered EAD and basic residues on the target. Herein we evaluated the polycation-π hypothesis via functional and theoretical interrogation of EAD variants. The experimental effects of a range of EAD sequence variations, including aromatic number, aromatic density and charge perturbations, all support the cation-π model. Moreover, the activity trends observed are well captured by a coarse-grained EAD chain model and a corresponding analytical model based on interaction between EAD aromatics and surface cations of a generic globular target. EAD-target binding, in the context of pathological Ewing's Sarcoma oncoproteins, is thus seen to be driven by a balance between EAD conformational entropy and favorable EAD-target cation-π contacts. Such a highly versatile mode of molecular recognition offers a general conceptual framework for promiscuous target recognition by polyvalent IDPs. © 2013 Song et al
Search for Gravitational Waves from Primordial Black Hole Binary Coalescences in the Galactic Halo
We use data from the second science run of the LIGO gravitational-wave
detectors to search for the gravitational waves from primordial black hole
(PBH) binary coalescence with component masses in the range 0.2--.
The analysis requires a signal to be found in the data from both LIGO
observatories, according to a set of coincidence criteria. No inspiral signals
were found. Assuming a spherical halo with core radius 5 kpc extending to 50
kpc containing non-spinning black holes with masses in the range 0.2--, we place an observational upper limit on the rate of PBH coalescence
of 63 per year per Milky Way halo (MWH) with 90% confidence.Comment: 7 pages, 4 figures, to be submitted to Phys. Rev.
Observation of associated near-side and away-side long-range correlations in √sNN=5.02 TeV proton-lead collisions with the ATLAS detector
Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02 TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1 μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos2Δϕ modulation for all ΣETPb ranges and particle pT
Performance of the CMS Cathode Strip Chambers with Cosmic Rays
The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device
in the CMS endcaps. Their performance has been evaluated using data taken
during a cosmic ray run in fall 2008. Measured noise levels are low, with the
number of noisy channels well below 1%. Coordinate resolution was measured for
all types of chambers, and fall in the range 47 microns to 243 microns. The
efficiencies for local charged track triggers, for hit and for segments
reconstruction were measured, and are above 99%. The timing resolution per
layer is approximately 5 ns
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
Duffy antigen receptor for chemokines and CXCL5 are essential for the recruitment of neutrophils in a multicellular model of rheumatoid arthritis synovium
OBJECTIVE: The role of chemokines and their transporters are poorly described in rheumatoid arthritis (RA). Evidence suggests that CXCL5 plays an important role as it is abundant in RA tissue and its neutralization moderates joint damage in animal models of arthritis. The chemokine transporter, Duffy Antigen Receptor for Chemokines (DARC), is also upregulated in early RA. Here we investigate the role of CXCL5 and DARC in regulating neutrophil recruitment using an in vitro model of the RA synovium. METHODS: To model the RA synovium, rheumatoid fibroblasts (RAF) were cocultured with endothelial cells (EC) for 24h. Gene expression in cocultured cells was investigated using TaqMan gene arrays. Roles of CXCL5 and DARC were determined by incorporating cocultures into a flow-based adhesion assay, where their function was demonstrated by blocking neutrophil recruitment with neutralizing reagents. RESULTS: EC-RAF coculture induced chemokine expression in both cell types. While CXC chemokines were modestly upregulated in EC, CXCL1, CXCL5 and CXCL8 expression were greatly increased in RAF. RAF also promoted the recruitment of flowing neutrophils to EC. Anti-CXCL5 antibody abolished neutrophil recruitment by neutralizing CXCL5 expressed on EC, or when used to immuno-deplete coculture conditioned medium. DARC was also induced on EC by coculture and an anti-Fy6 antibody or siRNA targeting of DARC expression effectively abolished neutrophil recruitment. CONCLUSION: For the first time in a model of human disease, the function of DARC has been demonstrated as essential for editing the chemokine signals presented by EC and for promoting unwanted leukocyte recruitment
Performance of CMS muon reconstruction in pp collision events at sqrt(s) = 7 TeV
The performance of muon reconstruction, identification, and triggering in CMS
has been studied using 40 inverse picobarns of data collected in pp collisions
at sqrt(s) = 7 TeV at the LHC in 2010. A few benchmark sets of selection
criteria covering a wide range of physics analysis needs have been examined.
For all considered selections, the efficiency to reconstruct and identify a
muon with a transverse momentum pT larger than a few GeV is above 95% over the
whole region of pseudorapidity covered by the CMS muon system, abs(eta) < 2.4,
while the probability to misidentify a hadron as a muon is well below 1%. The
efficiency to trigger on single muons with pT above a few GeV is higher than
90% over the full eta range, and typically substantially better. The overall
momentum scale is measured to a precision of 0.2% with muons from Z decays. The
transverse momentum resolution varies from 1% to 6% depending on pseudorapidity
for muons with pT below 100 GeV and, using cosmic rays, it is shown to be
better than 10% in the central region up to pT = 1 TeV. Observed distributions
of all quantities are well reproduced by the Monte Carlo simulation.Comment: Replaced with published version. Added journal reference and DO
A novel mechanism of neutrophil recruitment in a co-culture model of the rheumatoid synovium
OBJECTIVE: Rheumatoid arthritis (RA) is classically thought of as a Th1, T lymphocyte–driven disease of the adaptive immune system. However, cells of the innate immune system, including neutrophils, are prevalent within the diseased joint, and accumulate in large numbers. This study was undertaken to determine whether cells of the rheumatoid stromal microenvironment could establish an inflammatory environment in which endothelial cells are conditioned in a disease-specific manner to support neutrophil recruitment. METHODS: Human umbilical vein endothelial cells (ECs) and fibroblasts isolated from the synovium or skin of RA patients were established in coculture on opposite sides of porous transwell filters. After 24 hours of EC conditioning, the membranes were incorporated into a parallel-plate, flow-based adhesion assay and levels of neutrophil adhesion to ECs were measured. RESULTS: ECs cocultured with synovial, but not skin, fibroblasts could recruit neutrophils in a manner that was dependent on the number of fibroblasts. Antibody blockade of P-selectin or E-selectin reduced neutrophil adhesion, and an antibody against CD18 (the β2 integrin) abolished adhesion. Blockade of CXCR2, but not CXCR1, also greatly inhibited neutrophil recruitment. Interleukin-6 (IL-6) was detectable in coculture supernatants, and both IL-6 and neutrophil adhesion were reduced in a dose-dependent manner by hydrocortisone added to cocultures. Antibody blockade of IL-6 also effectively abolished neutrophil adhesion. CONCLUSION: Synovial fibroblasts from the rheumatoid joint play an important role in regulating the recruitment of inflammatory leukocytes during active disease. This process may depend on a previously unsuspected route of IL-6–mediated crosstalk between fibroblasts and endothelial cells
- …
