746 research outputs found

    Evolution of defense and herbivory in introduced plants-Testing enemy release using a known source population, herbivore trials, and time since introduction

    Get PDF
    The enemy release hypothesis is often cited as a potential explanation for the success of introduced plants; yet, empirical evidence for enemy release is mixed. We aimed to quantify changes in herbivory and defense in introduced plants while controlling for three factors that might have confounded past studies: using a wide native range for comparison with the introduced range, measuring defense traits without determining whether they affect herbivore preferences, and not considering the effect of time since introduction. The first hypothesis we tested was that introduced plants will have evolved lower levels of plant defense compared to their source population. We grew South African (source) and Australian (introduced) beach daisies (Arctotheca populifolia) in a common-environment glasshouse experiment and measured seven defense traits. Introduced plants had more ash, alkaloids, and leaf hairs than source plants, but were also less tough, with a lower C:N ratio and less phenolics. Overall, we found no difference in defense between source and introduced plants. To determine whether the feeding habits of herbivores align with changes in defense traits, we conducted preference feeding trials using five different herbivore species. Herbivores showed no overall preference for leaves from either group. The second hypothesis we tested was that herbivory on introduced plant species will increase through time after introduction to a new range. We recorded leaf damage on herbarium specimens of seven species introduced to eastern Australia and three native control species. We found no change in the overall level of herbivory experienced by introduced plants since arriving in Australia.Conclusion In the field of invasion ecology, we need to rethink the paradigm that species introduced to a new range undergo simple decreases in defenses against herbivores. Instead, plants are likely to employ a range of defense traits that evolve in both coordinated and opposing ways in response to a plethora of different biotic and abiotic selective pressures

    Regeneration niche differentiates functional strategies of desert woody plant species

    Get PDF
    Plant communities vary dramatically in the number and relative abundance of species that exhibit facilitative interactions, which contributes substantially to variation in community structure and dynamics. Predicting species’ responses to neighbors based on readily measurable functional traits would provide important insight into the factors that structure plant communities. We measured a suite of functional traits on seedlings of 20 species and mature plants of 54 species of shrubs from three arid biogeographic regions. We hypothesized that species with different regeneration niches—those that require nurse plants for establishment (beneficiaries) versus those that do not (colonizers)—are functionally different. Indeed, seedlings of beneficiary species had lower relative growth rates, larger seeds and final biomass, allocated biomass toward roots and height at a cost to leaf mass fraction, and constructed costly, dense leaf and root tissues relative to colonizers. Likewise at maturity, beneficiaries had larger overall size and denser leaves coupled with greater water use efficiency than colonizers. In contrast to current hypotheses that suggest beneficiaries are less “stress-tolerant” than colonizers, beneficiaries exhibited conservative functional strategies suited to persistently dry, low light conditions beneath canopies, whereas colonizers exhibited opportunistic strategies that may be advantageous in fluctuating, open microenvironments. In addition, the signature of the regeneration niche at maturity indicates that facilitation expands the range of functional diversity within plant communities at all ontogenetic stages. This study demonstrates the utility of specific functional traits for predicting species’ regeneration niches in hot deserts, and provides a framework for studying facilitation in other severe environments

    Species trait shifts in vegetation and soil seed bank during fen degradation

    Get PDF
    Fens in Central Europe are characterised by waterlogged organic substrate and low productivity. Human-induced changes due to drainage and mowing lead to changes in plant species composition from natural fen communities to fen meadows and later to over-drained, degraded meadows. Moderate drainage leads to increased vegetation productivity, and severe drainage results in frequent soil disturbances and less plant growth. In the present article, we analyse changes in plant trait combinations in the vegetation and the soil seed bank as well as changes in the seed bank types along gradient of drainage intensity. We hypothesize that an increase in productivity enhances traits related to persistence and that frequent disturbance selects for regeneration traits. We use multivariate statistics to analyse data from three disturbance levels: undisturbed fen, slightly drained fen meadow and severely drained degraded meadow. We found that the abundance of plants regenerating from seeds and accumulating persistent seed banks was increasing with degradation level, while plants reproducing vegetatively were gradually eliminated along the same trajectory. Plants with strong resprouting abilities increased during degradation. We also found that shifts in trait combinations were similar in the aboveground vegetation and in soil seed banks. We found that the density of short-term persistent seeds in the soil is highest in fen meadows and the density of long-term persistent seeds is highest in degraded meadows. The increase in abundance of species with strong regeneration traits at the cost of species with persistence-related traits has negative consequences for the restoration prospects of severely degraded sites

    Bridging reproductive and microbial ecology: a case study in arbuscular mycorrhizal fungi

    Get PDF
    Offspring size is a key trait for understanding the reproductive ecology of species, yet studies addressing the ecological meaning of offspring size have so far been limited to macro-organisms. We consider this a missed opportunity in microbial ecology and provide what we believe is the first formal study of offspring-size variation in microbes using reproductive models developed for macro-organisms. We mapped the entire distribution of fungal spore size in the arbuscular mycorrhizal (AM) fungi (subphylum Glomeromycotina) and tested allometric expectations of this trait to offspring (spore) output and body size. Our results reveal a potential paradox in the reproductive ecology of AM fungi: while large spore-size variation is maintained through evolutionary time (independent of body size), increases in spore size trade off with spore output. That is, parental mycelia of large-spored species produce fewer spores and thus may have a fitness disadvantage compared to small-spored species. The persistence of the large-spore strategy, despite this apparent fitness disadvantage, suggests the existence of advantages to large-spored species that could manifest later in fungal life history. Thus, we consider that solving this paradox opens the door to fruitful future research establishing the relationship between offspring size and other AM life history traits

    Combining functional weed ecology and crop stable isotope ratios to identify cultivation intensity: a comparison of cereal production regimes in Haute Provence, France and Asturias, Spain

    Get PDF
    This investigation combines two independent methods of identifying crop growing conditions and husbandry practices—functional weed ecology and crop stable carbon and nitrogen isotope analysis—in order to assess their potential for inferring the intensity of past cereal production systems using archaeobotanical assemblages. Present-day organic cereal farming in Haute Provence, France features crop varieties adapted to low-nutrient soils managed through crop rotation, with little to no manuring. Weed quadrat survey of 60 crop field transects in this region revealed that floristic variation primarily reflects geographical differences. Functional ecological weed data clearly distinguish the Provence fields from those surveyed in a previous study of intensively managed spelt wheat in Asturias, north-western Spain: as expected, weed ecological data reflect higher soil fertility and disturbance in Asturias. Similarly, crop stable nitrogen isotope values distinguish between intensive manuring in Asturias and long-term cultivation with minimal manuring in Haute Provence. The new model of cereal cultivation intensity based on weed ecology and crop isotope values in Haute Provence and Asturias was tested through application to two other present-day regimes, successfully identifying a high-intensity regime in the Sighisoara region, Romania, and low-intensity production in Kastamonu, Turkey. Application of this new model to Neolithic archaeobotanical assemblages in central Europe suggests that early farming tended to be intensive, and likely incorporated manuring, but also exhibited considerable variation, providing a finer grained understanding of cultivation intensity than previously available

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
    corecore