280 research outputs found

    A Holder Continuous Nowhere Improvable Function with Derivative Singular Distribution

    Full text link
    We present a class of functions K\mathcal{K} in C0(R)C^0(\R) which is variant of the Knopp class of nowhere differentiable functions. We derive estimates which establish \mathcal{K} \sub C^{0,\al}(\R) for 0<\al<1 but no KKK \in \mathcal{K} is pointwise anywhere improvable to C^{0,\be} for any \be>\al. In particular, all KK's are nowhere differentiable with derivatives singular distributions. K\mathcal{K} furnishes explicit realizations of the functional analytic result of Berezhnoi. Recently, the author and simulteously others laid the foundations of Vector-Valued Calculus of Variations in LL^\infty (Katzourakis), of LL^\infty-Extremal Quasiconformal maps (Capogna and Raich, Katzourakis) and of Optimal Lipschitz Extensions of maps (Sheffield and Smart). The "Euler-Lagrange PDE" of Calculus of Variations in LL^\infty is the nonlinear nondivergence form Aronsson PDE with as special case the \infty-Laplacian. Using K\mathcal{K}, we construct singular solutions for these PDEs. In the scalar case, we partially answered the open C1C^1 regularity problem of Viscosity Solutions to Aronsson's PDE (Katzourakis). In the vector case, the solutions can not be rigorously interpreted by existing PDE theories and justify our new theory of Contact solutions for fully nonlinear systems (Katzourakis). Validity of arguments of our new theory and failure of classical approaches both rely on the properties of K\mathcal{K}.Comment: 5 figures, accepted to SeMA Journal (2012), to appea

    Loneliness, social support and cardiovascular reactivity to laboratory stress

    No full text
    Self-reported or explicit loneliness and social support have been inconsistently associated with cardiovascular reactivity (CVR) to stress. The present study aimed to adapt an implicit measure of loneliness, and use it alongside the measures of explicit loneliness and social support, to investigate their correlations with CVR to laboratory stress. Twenty-five female volunteers aged between 18 and 39 years completed self-reported measures of loneliness and social support, and an Implicit Association Test (IAT) of loneliness. The systolic blood pressure (SBP), diastolic blood pressure (DBP) and heart rate (HR) reactivity indices were measured in response to psychosocial stress induced in the laboratory. Functional support indices of social support were significantly correlated with CVR reactivity to stress. Interestingly, implicit, but not explicit, loneliness was significantly correlated with DBP reactivity after one of the stressors. No associations were found between structural support and CVR indices. Results are discussed in terms of validity of implicit versus explicit measures and possible factors that affect physiological outcomes

    Manipulating cardiovascular indices of challenge and threat using resource appraisals

    Get PDF
    Challenge and threat reflect two distinct psychophysiological approaches to motivated performance situations. Challenge is related to superior performance in a range of tasks compared to threat, thus methods to promote challenge are valuable. In this paper we manipulate challenge and threat cardiovascular reactivity using only resource appraisals, without altering perceived task demands between challenge and threat conditions. Study 1 used a competitive throwing task and Study 2 used a physically demanding climbing task. In both studies challenge task instructions led to challenge cardiovascular reactivity and threat task instructions led to threat cardiovascular reactivity. In Study 1, participants who received challenge instructions performed better than participants who received threat instructions. In Study 2, attendance at the climbing task did not differ across groups. The findings have implications for stress management in terms of focusing on manipulating appraisals of upcoming tasks by promoting self-efficacy and perceived control and focusing on approach goals. Future research could more reliably assess the influence of similar task instructions on performance. © 2014 Elsevier B.V

    A novel dynamic neonatal blood-brain barrier on a chip

    Get PDF
    © 2015 Deosarkar et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Studies of neonatal neural pathologies and development of appropriate therapeutics are hampered by a lack of relevant in vitro models of neonatal blood-brain barrier (BBB). To establish such a model, we have developed a novel blood-brain barrier on a chip (B3C) that comprises a tissue compartment and vascular channels placed side-by-side mimicking the three-dimensional morphology, size and flow characteristics of microvessels in vivo. Rat brain endothelial cells (RBEC) isolated from neonatal rats were seeded in the vascular channels of B3C and maintained under shear flow conditions, while neonatal rat astrocytes were cultured under static conditions in the tissue compartment of the B3C. RBEC formed continuous endothelial lining with a central lumen along the length of the vascular channels of B3C and exhibited tight junction formation, as measured by the expression of zonula occludens-1 (ZO-1). ZO-1 expression significantly increased with shear flow in the vascular channels and with the presence of astrocyte conditioned medium (ACM) or astrocytes cultured in the tissue compartment. Consistent with in vivo BBB, B3C allowed endfeet-like astrocyte-endothelial cell interactions through a porous interface that separates the tissue compartment containing cultured astrocytes from the cultured RBEC in the vascular channels. The permeability of fluorescent 40 kDa dextran from vascular channel to the tissue compartment significantly decreased when RBEC were cultured in the presence of astrocytes or ACM (from 41.0±0.9 x 10?6 cm/s to 2.9±1.0 x 10?6 cm/s or 1.1±0.4 x 10?6 cm/s, respectively). Measurement of electrical resistance in B3C further supports that the addition of ACM significantly improves the barrier function in neonatal RBEC. Moreover, B3C exhibits significantly improved barrier characteristics compared to the transwell model and B3C permeability was not significantly different from the in vivo BBB permeability in neonatal rats. In summary, we developed a first dynamic in vitro neonatal BBB on a chip (B3C) that closely mimics the in vivo microenvironment, offers the flexibility of real time analysis, and is suitable for studies of BBB function as well as screening of novel therapeutics

    Preventing mood and anxiety disorders in youth: a multi-centre RCT in the high risk offspring of depressed and anxious patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Anxiety and mood disorders are highly prevalent and pose a huge burden on patients. Their offspring is at increased risk of developing these disorders as well, indicating a clear need for prevention of psychopathology in this group. Given high comorbidity and non-specificity of intergenerational transmission of disorders, prevention programs should target both anxiety and depression. Further, while the indication for preventive interventions is often elevated symptoms, offspring with other high risk profiles may also benefit from resilience-based prevention programs.</p> <p>Method/design</p> <p>The current STERK-study (Screening and Training: Enhancing Resilience in Kids) is a randomized controlled clinical trial combining selected and indicated prevention: it is targeted at both high risk individuals without symptoms and at those with subsyndromal symptoms. Individuals without symptoms meet two of three criteria of the High Risk Index (HRI; female gender, both parents affected, history of a parental suicide (attempt). This index was developed in an earlier study and corresponds with elevated risk in offspring of depressed patients. Children aged 8–17 years (n = 204) with subthreshold symptoms or meeting the criteria on the HRI are randomised to one of two treatment conditions, namely (a) 10 weekly individual child CBT sessions and 2 parent sessions or (b) minimal information. Assessments are held at pre-test, post-test and at 12 and 24 months follow-up. Primary outcome is the time to onset of a mood or anxiety disorder in the offspring. Secondary outcome measures include number of days with depression or anxiety, child and parent symptom levels, quality of life, and cost-effectiveness. Based on models of aetiology of mood and anxiety disorders as well as mechanisms of change during interventions, we selected potential mediators and moderators of treatment outcome, namely coping, parent–child interaction, self-associations, optimism/pessimism, temperament, and emotion processing.</p> <p>Discussion</p> <p>The current intervention trial aims to significantly reduce the risk of intergenerational transmission of mood and anxiety disorders with a short and well targeted intervention that is directed at strengthening the resilience in potentially vulnerable children. We plan to evaluate the effectiveness and cost-effectiveness of such an intervention and to identify mechanisms of change.</p> <p>Trial registration</p> <p>NTR2888</p

    Search for Dark Matter and Supersymmetry with a Compressed Mass Spectrum in the Vector Boson Fusion Topology in Proton-Proton Collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Oxygen Tension Modulates Neurite Outgrowth in PC12 Cells Through A Mechanism Involving HIF and VEGF

    Get PDF
    Cell-based approaches are a promising therapeutic strategy for treating injuries to the nervous system, but the optimal means to promote neurite extension and direct cellular behavior are unclear. Previous studies have examined the behavior of neural-like cells in ambient air (21% oxygen tension), yet these conditions are not representative of the physiological oxygen microenvironment of neural tissues. We hypothesized that neuronal differentiation of a model neural cell line (PC12) could be controlled by modulating local oxygen tension. Compared to ambient conditions, PC12 cells cultured in reduced oxygen exhibited significant increases in neurite extension and total neurite length, with 4% oxygen yielding the highest levels of both indicators. We confirmed neurite extension was mediated through oxygen-responsive mechanisms using small molecules that promote or inhibit HIF-1α stabilization. The hypoxic target gene Vegf was implicated as a neurotrophic factor, as neurite formation at 21% oxygen was mimicked with exogenous VEGF, and a VEGF-neutralizing antibody attenuated neurite formation under reduced oxygen conditions. These findings demonstrate that behavior of neural-like cells is driven by the oxygen microenvironment via VEGF function, and suggest promising approaches for future applications in neural repair

    Potential Role of Aromatase over Estrogen Receptor Gene Polymorphisms in Migraine Susceptibility: A Case Control Study from North India

    Get PDF
    BACKGROUND: The present study was undertaken to find out the role of estrogen pathway related gene polymorphisms in susceptibility to migraine in Northern Indian population. Aromatase, CYP19A1 (rs10046 and rs4646); estrogen receptors, ESR1 (rs2234693, rs1801132, rs2228480 and rs9340799) and ESR2 (rs1271572 and rs1256049) polymorphisms were selected for the present study. METHODOLOGY/PRINCIPAL FINDINGS: The patients were recruited in two cohorts - primary (207) and replicative (127) along with 200 healthy controls and genotyped for various polymorphisms. Logistic regression analysis was applied for statistical analyses. The results were validated in the replicative cohort and pooled by meta analysis using Fisher's and Mantel-Haenszel test. Furthermore, Benjamini - Hochberg false discovery rate test was used to correct for multiple comparisons. CYP19A1 rs10046 and CYP19A1 rs4646 polymorphisms were found to confer risk and protective effect, respectively. Out of four ESR1 polymorphisms, only rs2234693 variant allele was significantly associated in migraine with aura. No significant associations were observed for ESR2 polymorphisms. Significant haplotypes were identified for CYP19A1 and ESR1 polymorphisms. Gene- gene interactions of genotypes as well as haplotypes were observed for CYP19A1- ESR1 showing both risk and protective combinations. CONCLUSION: We strongly suggest CYP19A1 polymorphisms to be the major contributing factors in migraine susceptibility instead of genetic variants of estrogen receptors

    Influence of the oxygen microenvironment on the proangiogenic potential of human endothelial colony forming cells

    Get PDF
    Therapeutic angiogenesis is a promising strategy to promote the formation of new or collateral vessels for tissue regeneration and repair. Since changes in tissue oxygen concentrations are known to stimulate numerous cell functions, these studies have focused on the oxygen microenvironment and its role on the angiogenic potential of endothelial cells. We analyzed the proangiogenic potential of human endothelial colony-forming cells (hECFCs), a highly proliferative population of circulating endothelial progenitor cells, and compared outcomes to human dermal microvascular cells (HMVECs) under oxygen tensions ranging from 1% to 21% O2, representative of ischemic or healthy tissues and standard culture conditions. Compared to HMVECs, hECFCs (1) exhibited significantly greater proliferation in both ischemic conditions and ambient air; (2) demonstrated increased migration compared to HMVECs when exposed to chemotactic gradients in reduced oxygen; and (3) exhibited comparable or superior proangiogenic potential in reduced oxygen conditions when assessed using a vessel-forming assay. These data demonstrate that the angiogenic potential of both endothelial populations is influenced by the local oxygen microenvironment. However, hECFCs exhibit a robust angiogenic potential in oxygen conditions representative of physiologic, ischemic, or ambient air conditions, and these findings suggest that hECFCs may be a superior cell source for use in cell-based approaches for the neovascularization of ischemic or engineered tissues
    corecore