research

A Holder Continuous Nowhere Improvable Function with Derivative Singular Distribution

Abstract

We present a class of functions K\mathcal{K} in C0(R)C^0(\R) which is variant of the Knopp class of nowhere differentiable functions. We derive estimates which establish \mathcal{K} \sub C^{0,\al}(\R) for 0<\al<1 but no KKK \in \mathcal{K} is pointwise anywhere improvable to C^{0,\be} for any \be>\al. In particular, all KK's are nowhere differentiable with derivatives singular distributions. K\mathcal{K} furnishes explicit realizations of the functional analytic result of Berezhnoi. Recently, the author and simulteously others laid the foundations of Vector-Valued Calculus of Variations in LL^\infty (Katzourakis), of LL^\infty-Extremal Quasiconformal maps (Capogna and Raich, Katzourakis) and of Optimal Lipschitz Extensions of maps (Sheffield and Smart). The "Euler-Lagrange PDE" of Calculus of Variations in LL^\infty is the nonlinear nondivergence form Aronsson PDE with as special case the \infty-Laplacian. Using K\mathcal{K}, we construct singular solutions for these PDEs. In the scalar case, we partially answered the open C1C^1 regularity problem of Viscosity Solutions to Aronsson's PDE (Katzourakis). In the vector case, the solutions can not be rigorously interpreted by existing PDE theories and justify our new theory of Contact solutions for fully nonlinear systems (Katzourakis). Validity of arguments of our new theory and failure of classical approaches both rely on the properties of K\mathcal{K}.Comment: 5 figures, accepted to SeMA Journal (2012), to appea

    Similar works