475 research outputs found

    Factors predictive of lymph node metastasis in the follicular variant of papillary thyroid carcinoma

    Get PDF
    BACKGROUND: The treatment of papillary thyroid carcinomas larger than 1 cm usually consists of total thyroidectomy and central lymph node dissection (LND). In patients with the follicular variant of papillary thyroid carcinoma (FVPTC), preoperative cytology and intraoperative frozen-section analysis cannot always establish the diagnosis. The aim of this study was to evaluate predictive factors for lymph node metastasis in patients with FVPTC and to identify patients who might benefit from LND. METHODS: The study included patients with FVPTC treated by total thyroidectomy and LND between 2000 and 2010 in four departments. When fewer than six non-involved lymph nodes were removed, the patient was excluded from the analysis. RESULTS: Some 199 patients were included. The median tumour size was 17 (range 1-85) mm, and tumours were classified as T1a in 28 patients, T1b in 40, T2 in 53, and T3 in 78. Eighty-one patients (40·7 per cent) had lymph node metastasis (51 classified as N1a and 30 as N1b). Four risk factors were predictive of lymph node metastasis in the multivariable analysis: multifocality (odds ratio (OR) 2·36, 95 per cent confidence interval 1·15 to 4·86), angiolymphatic invasion (OR 3·67, 1·01 to 13·36), absence of tumour capsule (OR 3·00, 1·47 to 6·14) and tumour involvement of perithyroid tissue (OR 3·89, 1·85 to 8·18). The rate of lymph node metastasis varied between 14 and 94 per cent depending on the presence of risk factors. CONCLUSION: The rate of lymph node metastasis in patients with FVPTC varies widely according to the presence or absence of predictive risk factors

    Lemaitre-Tolman-Bondi model and accelerating expansion

    Full text link
    I discuss the spherically symmetric but inhomogeneous Lemaitre-Tolman- Bondi (LTB) metric, which provides an exact toy model for an inhomogeneous universe. Since we observe light rays from the past light cone, not the expansion of the universe, spatial variation in matter density and Hubble rate can have the same effect on redshift as acceleration in a perfectly homogeneous universe. As a consequence, a simple spatial variation in the Hubble rate can account for the distant supernova data in a dust universe without any dark energy. I also review various attempts towards a semirealistic description of the universe based on the LTB model.Comment: Invited Review for a special Gen. Rel. Grav. issue on Dark Energy. 17 pages, 3 figure

    Relic Neutrino Absorption Spectroscopy

    Full text link
    Resonant annihilation of extremely high-energy cosmic neutrinos on big-bang relic anti-neutrinos (and vice versa) into Z-bosons leads to sizable absorption dips in the neutrino flux to be observed at Earth. The high-energy edges of these dips are fixed, via the resonance energies, by the neutrino masses alone. Their depths are determined by the cosmic neutrino background density, by the cosmological parameters determining the expansion rate of the universe, and by the large redshift history of the cosmic neutrino sources. We investigate the possibility of determining the existence of the cosmic neutrino background within the next decade from a measurement of these absorption dips in the neutrino flux. As a by-product, we study the prospects to infer the absolute neutrino mass scale. We find that, with the presently planned neutrino detectors (ANITA, Auger, EUSO, OWL, RICE, and SalSA) operating in the relevant energy regime above 10^{21} eV, relic neutrino absorption spectroscopy becomes a realistic possibility. It requires, however, the existence of extremely powerful neutrino sources, which should be opaque to nucleons and high-energy photons to evade present constraints. Furthermore, the neutrino mass spectrum must be quasi-degenerate to optimize the dip, which implies m_{nu} >~ 0.1 eV for the lightest neutrino. With a second generation of neutrino detectors, these demanding requirements can be relaxed considerably.Comment: 19 pages, 26 figures, REVTeX

    Pembrolizumab as Consolidation Strategy in Patients with Multiple Myeloma: Results of the GEM-Pembresid Clinical Trial

    Get PDF
    PD1 expression in CD4+ and CD8+ T cells is increased after treatment in multiple myeloma patients with persistent disease. The GEM-Pembresid trial analyzed the efficacy and safety of pembrolizumab as consolidation in patients achieving at least very good partial response but with persistent measurable disease after first- or second-line treatment. Moreover, the characteristics of the immune system were investigated to identify potential biomarkers of response to pembrolizumab. One out of the 17 evaluable patients showed a decrease in the amount of M-protein, although a potential late effect of high-dose melphalan could not be ruled out. Fourteen adverse events were considered related to pembrolizumab, two of which (G3 diarrhea and G2 pneumonitis) prompted treatment discontinuation and all resolving without sequelae. Interestingly, pembrolizumab induced a decrease in the percentage of NK cells at cycle 3, due to the reduction of the circulating and adaptive subsets (0.615 vs. 0.43, p = 0.007; 1.12 vs. 0.86, p = 0.02). In the early progressors, a significantly lower expression of PD1 in CD8+ effector memory T cells (MFI 1327 vs. 926, p = 0.03) was observed. In conclusion, pembrolizumab used as consolidation monotherapy shows an acceptable toxicity profile but did not improve responses in this MM patient population. The trial was registered at clinicaltrials.gov with identifier NCT02636010 and with EUDRACT number 2015-003359-23.This study was funded by FundaciĂłn RamĂłn Areces (FRA 16/003). T.P. is supported by a grant from the AECC (INVES18043PAIN). This study received financial support from Merck Sharp & Dohme of Spain, a subsidiary of Merck & Co., Inc., Whitehouse Station, New Jersey, USA

    Susceptibility and dilution effects of the kagome bi-layer geometrically frustrated network. A Ga-NMR study of SrCr_(9p)Ga_(12-9p)O_(19)

    Full text link
    We present an extensive gallium NMR study of the geometrically frustrated kagome bi-layer compound SrCr_(9p)Ga_(12-9p)O_(19) (Cr^3+, S=3/2) over a broad Cr-concentration range (.72<p<.95). This allows us to probe locally the kagome bi-layer susceptibility and separate the intrinsic properties due to the geometric frustration from those related to the site dilution. Our major findings are: 1) The intrinsic kagome bi-layer susceptibility exhibits a maximum in temperature at 40-50 K and is robust to a dilution as high as ~20%. The maximum reveals the development of short range antiferromagnetic correlations; 2) At low-T, a highly dynamical state induces a strong wipe-out of the NMR intensity, regardless of dilution; 3) The low-T upturn observed in the macroscopic susceptibility is associated to paramagnetic defects which stem from the dilution of the kagome bi-layer. The low-T analysis of the NMR lineshape suggests that the defect can be associated with a staggered spin-response to the vacancies on the kagome bi-layer. This, altogether with the maximum in the kagome bi-layer susceptibility, is very similar to what is observed in most low-dimensional antiferromagnetic correlated systems; 4) The spin glass-like freezing observed at T_g=2-4 K is not driven by the dilution-induced defects.Comment: 19 pages, 19 figures, revised version resubmitted to PRB Minor modifications: Fig.11 and discussion in Sec.V on the NMR shif

    Pembrolizumab as consolidation strategy in patients with multiple myeloma: Results of the GEM-Pembresid clinical trial

    Get PDF
    PD1 expression in CD4+ and CD8+ T cells is increased after treatment in multiple myeloma patients with persistent disease. The GEM-Pembresid trial analyzed the efficacy and safety of pembrolizumab as consolidation in patients achieving at least very good partial response but with persistent measurable disease after first- or second-line treatment. Moreover, the characteristics of the immune system were investigated to identify potential biomarkers of response to pembrolizumab. One out of the 17 evaluable patients showed a decrease in the amount of M-protein, although a potential late effect of high-dose melphalan could not be ruled out. Fourteen adverse events were considered related to pembrolizumab, two of which (G3 diarrhea and G2 pneumonitis) prompted treatment discontinuation and all resolving without sequelae. Interestingly, pembrolizumab induced a decrease in the percentage of NK cells at cycle 3, due to the reduction of the circulating and adaptive subsets (0.615 vs. 0.43, p = 0.007; 1.12 vs. 0.86, p = 0.02). In the early progressors, a significantly lower expression of PD1 in CD8+ effector memory T cells (MFI 1327 vs. 926, p = 0.03) was observed. In conclusion, pembrolizumab used as consolidation monotherapy shows an acceptable toxicity profile but did not improve responses in this MM patient population. The trial was registered at clinicaltrials.gov with identifier NCT02636010 and with EUDRACT number 2015-003359-23

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF
    Measurements of inclusive jet suppression in heavy ion collisions at the LHC provide direct sensitivity to the physics of jet quenching. In a sample of lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the anti-kt algorithm with values for the distance parameter that determines the nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp. Jet production is found to be suppressed by approximately a factor of two in the 10% most central collisions relative to peripheral collisions. Rcp varies smoothly with centrality as characterized by the number of participating nucleons. The observed suppression is only weakly dependent on jet radius and transverse momentum. These results provide the first direct measurement of inclusive jet suppression in heavy ion collisions and complement previous measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables, submitted to Physics Letters B. All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio
    • 

    corecore