102 research outputs found

    Stacked Search for Gravitational Waves from the 2006 SGR 1900+14 Storm

    Get PDF
    We present the results of a LIGO search for short-duration gravitational waves (GWs) associated with the 2006 March 29 SGR 1900+14 storm. A new search method is used, "stacking'' the GW data around the times of individual soft-gamma bursts in the storm to enhance sensitivity for models in which multiple bursts are accompanied by GW emission. We assume that variation in the time difference between burst electromagnetic emission and potential burst GW emission is small relative to the GW signal duration, and we time-align GW excess power time-frequency tilings containing individual burst triggers to their corresponding electromagnetic emissions. We use two GW emission models in our search: a fluence-weighted model and a flat (unweighted) model for the most electromagnetically energetic bursts. We find no evidence of GWs associated with either model. Model-dependent GW strain, isotropic GW emission energy E_GW, and \gamma = E_GW / E_EM upper limits are estimated using a variety of assumed waveforms. The stacking method allows us to set the most stringent model-dependent limits on transient GW strain published to date. We find E_GW upper limit estimates (at a nominal distance of 10 kpc) of between 2x10^45 erg and 6x10^50 erg depending on waveform type. These limits are an order of magnitude lower than upper limits published previously for this storm and overlap with the range of electromagnetic energies emitted in SGR giant flares.Comment: 7 pages, 3 figure

    Measurements of the ΜΌ\nu_{\mu} and ΜˉΌ\bar{\nu}_{\mu}-induced Coherent Charged Pion Production Cross Sections on 12C^{12}C by the T2K experiment

    Get PDF
    We report an updated measurement of the ΜΌ\nu_{\mu}-induced, and the first measurement of the ΜˉΌ\bar{\nu}_{\mu}-induced coherent charged pion production cross section on 12C^{12}C nuclei in the T2K experiment. This is measured in a restricted region of the final-state phase space for which pÎŒ,π>0.2p_{\mu,\pi} > 0.2 GeV, cos⁥(ΞΌ)>0.8\cos(\theta_{\mu}) > 0.8 and cos⁥(Ξπ)>0.6\cos(\theta_{\pi}) > 0.6, and at a mean (anti)neutrino energy of 0.85 GeV using the T2K near detector. The measured ΜΌ\nu_{\mu} CC coherent pion production flux-averaged cross section on 12C^{12}C is (2.98±0.37(stat.)±0.31(syst.)+0.49−0.00(Q2 model))×10−40 cm2(2.98 \pm 0.37 (stat.) \pm 0.31 (syst.) \substack{ +0.49 \\ -0.00 } \mathrm{ (Q^2\,model)}) \times 10^{-40}~\mathrm{cm}^{2}. The new measurement of the ΜˉΌ\bar{\nu}_{\mu}-induced cross section on 12C^{12}{C} is (3.05±0.71(stat.)±0.39(syst.)+0.74−0.00(Q2 model))×10−40 cm2(3.05 \pm 0.71 (stat.) \pm 0.39 (syst.) \substack{ +0.74 \\ -0.00 } \mathrm{(Q^2\,model)}) \times 10^{-40}~\mathrm{cm}^{2}. The results are compatible with both the NEUT 5.4.0 Berger-Sehgal (2009) and GENIE 2.8.0 Rein-Sehgal (2007) model predictions

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Scintillator ageing of the T2K near detectors from 2010 to 2021

    Get PDF
    The T2K experiment widely uses plastic scintillator as a target for neutrino interactions and an active medium for the measurement of charged particles produced in neutrino interactions at its near detector complex. Over 10 years of operation the measured light yield recorded by the scintillator based subsystems has been observed to degrade by 0.9–2.2% per year. Extrapolation of the degradation rate through to 2040 indicates the recorded light yield should remain above the lower threshold used by the current reconstruction algorithms for all subsystems. This will allow the near detectors to continue contributing to important physics measurements during the T2K-II and Hyper-Kamiokande eras. Additionally, work to disentangle the degradation of the plastic scintillator and wavelength shifting fibres shows that the reduction in light yield can be attributed to the ageing of the plastic scintillator. The long component of the attenuation length of the wavelength shifting fibres was observed to degrade by 1.3–5.4% per year, while the short component of the attenuation length did not show any conclusive degradation

    Measurements of the ΜΌ and ÎœÂŻÎŒ -induced coherent charged pion production cross sections on C12 by the T2K experiment

    Get PDF
    We report an updated measurement of the Îœ ÎŒ -induced, and the first measurement of the ÂŻ Îœ ÎŒ -induced coherent charged pion production cross section on 12 C nuclei in the Tokai-to-Kamioka experiment. This is measured in a restricted region of the final-state phase space for which p ÎŒ , π > 0.2     GeV , cos ( Ξ ÎŒ ) > 0.8 and cos ( Ξ π ) > 0.6 , and at a mean (anti)neutrino energy of 0.85 GeV using the T2K near detector. The measured Îœ ÎŒ charged current coherent pion production flux-averaged cross section on 12 C is ( 2.98 ± 0.37 ( stat ) ± 0.31 ( syst ) + 0.49 − 0.00 ( Q 2   model ) ) × 10 − 40     cm 2 . The new measurement of the ÂŻ Îœ ÎŒ -induced cross section on 12 C is ( 3.05 ± 0.71 ( stat ) ± 0.39 ( syst ) + 0.74 − 0.00 ( Q 2   model ) ) × 10 − 40     cm 2 . The results are compatible with both the NEUT 5.4.0 Berger-Sehgal (2009) and GENIE 2.8.0 Rein-Sehgal (2007) model predictions

    Multi-messenger Observations of a Binary Neutron Star Merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∌ 1.7 {{s}} with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of {40}-8+8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 {M}ÈŻ . An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∌ 40 {{Mpc}}) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∌10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∌ 9 and ∌ 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.</p
    • 

    corecore