395 research outputs found

    Shapley effects and proportional marginal effects for global sensitivity analysis: application to computed tomography scan organ dose estimation

    Full text link
    Concerns have been raised about possible cancer risks after exposure to computed tomography (CT) scans in childhood. The health effects of ionizing radiation are then estimated from the absorbed dose to the organs of interest which is calculated, for each CT scan, from dosimetric numerical models, like the one proposed in the NCICT software. Given that a dosimetric model depends on input parameters which are most often uncertain, the calculation of absorbed doses is inherently uncertain. A current methodological challenge in radiation epidemiology is thus to be able to account for dose uncertainty in risk estimation. A preliminary important step can be to identify the most influential input parameters implied in dose estimation, before modelling and accounting for their related uncertainty in radiation-induced health risks estimates. In this work, a variance-based global sensitivity analysis was performed to rank by influence the uncertain input parameters of the NCICT software implied in brain and red bone marrow doses estimation, for four classes of CT examinations. Two recent sensitivity indices, especially adapted to the case of dependent input parameters, were estimated, namely: the Shapley effects and the Proportional Marginal Effects (PME). This provides a first comparison of the respective behavior and usefulness of these two indices on a real medical application case. The conclusion is that Shapley effects and PME are intrinsically different, but complementary. Interestingly, we also observed that the proportional redistribution property of the PME allowed for a clearer importance hierarchy between the input parameters

    Understanding black-box models with dependent inputs through a generalization of Hoeffding's decomposition

    Full text link
    One of the main challenges for interpreting black-box models is the ability to uniquely decompose square-integrable functions of non-mutually independent random inputs into a sum of functions of every possible subset of variables. However, dealing with dependencies among inputs can be complicated. We propose a novel framework to study this problem, linking three domains of mathematics: probability theory, functional analysis, and combinatorics. We show that, under two reasonable assumptions on the inputs (non-perfect functional dependence and non-degenerate stochastic dependence), it is always possible to decompose uniquely such a function. This ``canonical decomposition'' is relatively intuitive and unveils the linear nature of non-linear functions of non-linearly dependent inputs. In this framework, we effectively generalize the well-known Hoeffding decomposition, which can be seen as a particular case. Oblique projections of the black-box model allow for novel interpretability indices for evaluation and variance decomposition. Aside from their intuitive nature, the properties of these novel indices are studied and discussed. This result offers a path towards a more precise uncertainty quantification, which can benefit sensitivity analyses and interpretability studies, whenever the inputs are dependent. This decomposition is illustrated analytically, and the challenges to adopting these results in practice are discussed

    Mentha suaveolens Ehrh. Chemotypes in Eastern Iberian Peninsula: Essential Oil Variation and Relation with Ecological Factors

    Full text link
    [EN] Essential oil (EO) extracts coming from two representative populations of Mentha suaveolens Ehrh. subesp. suaveolens in Eastern Iberian Peninsula were analyzed by gas chromatography coupled with mass spectrometry and flame ion detector. Plant sampling was carried out in the morning and evening in order to study diurnal variation in EO profiles. Likewise, leaves and inflorescences were analyzed separately. Two chemotypes corresponding to each one of the populations were identified, with piperitenone oxide (35.2 - 74.3%) and piperitone oxide (83.9 - 91.3%), respectively, as major compounds. Once different chemotypes were identified, canonical correspondence analysis was employed to evaluate the effect of the bioclimatic and edaphic factors recorded in each location on the observed differences. Statistical analysis suggested that these chemotypes were closely related to specific environmental factors, mainly the bioclimatic ones. Concretely, piperitenone oxide chemotype can be associated to supramediterranean bioclimatic conditions and soils with major salinity and water field capacity. On the other hand, the most volatile fraction (hydrocarbon monoterpenes) reached its higher level in the morning; specifically, a noticeable amount of limonene was found in morning samples of flowers (4.8 - 10.6%). This fact can be related to ecological role of volatile compounds in order to attract pollinator insects.Llorens Molina, JA.; Rivera Seclén, CF.; Vacas Gonzålez, S.; Boira Tortajada, H. (2017). Mentha suaveolens Ehrh. Chemotypes in Eastern Iberian Peninsula: Essential Oil Variation and Relation with Ecological Factors. Chemistry & Biodiversity. 14(12):1-9. doi:10.1002/cbdv.201700320S19141

    Search for pair-produced long-lived neutral particles decaying to jets in the ATLAS hadronic calorimeter in ppcollisions at √s=8TeV

    Get PDF
    The ATLAS detector at the Large Hadron Collider at CERN is used to search for the decay of a scalar boson to a pair of long-lived particles, neutral under the Standard Model gauge group, in 20.3fb−1of data collected in proton–proton collisions at √s=8TeV. This search is sensitive to long-lived particles that decay to Standard Model particles producing jets at the outer edge of the ATLAS electromagnetic calorimeter or inside the hadronic calorimeter. No significant excess of events is observed. Limits are reported on the product of the scalar boson production cross section times branching ratio into long-lived neutral particles as a function of the proper lifetime of the particles. Limits are reported for boson masses from 100 GeVto 900 GeV, and a long-lived neutral particle mass from 10 GeVto 150 GeV

    Measurement of the transverse polarization of Λ and Λ¯ hyperons produced in proton-proton collisions at √s=7  TeV using the ATLAS detector

    Get PDF
    The transverse polarization of Λ and Λ¯ hyperons produced in proton-proton collisions at a center-of-mass energy of 7 TeV is measured. The analysis uses 760  Όb−1 of minimum bias data collected by the ATLAS detector at the LHC in the year 2010. The measured transverse polarization averaged over Feynman xF from 5×10−5 to 0.01 and transverse momentum pT from 0.8 to 15 GeV is −0.010±0.005(stat)±0.004(syst) for Λ and 0.002±0.006(stat)±0.004(syst) for Λ¯. It is also measured as a function of xF and pT, but no significant dependence on these variables is observed. Prior to this measurement, the polarization was measured at fixed-target experiments with center-of-mass energies up to about 40 GeV. The ATLAS results are compatible with the extrapolation of a fit from previous measurements to the xF range covered by this measurement

    Measurement of Higgs boson production in the diphoton decay channel in pp collisions at center-of-mass energies of 7 and 8 TeV with the ATLAS detector

    Get PDF
    A measurement of the production processes of the recently discovered Higgs boson is performed in the two-photon final state using 4.5  fb[superscript −1] of proton-proton collisions data at √s=7  TeV and 20.3  fb[superscript −1] at √s=8  TeV collected by the ATLAS detector at the Large Hadron Collider. The number of observed Higgs boson decays to diphotons divided by the corresponding Standard Model prediction, called the signal strength, is found to be ÎŒ=1.17±0.27 at the value of the Higgs boson mass measured by ATLAS, m[subscript H]=125.4  GeV. The analysis is optimized to measure the signal strengths for individual Higgs boson production processes at this value of m[subscript H]. They are found to be ÎŒ[subscript ggF]=1.32±0.38, ÎŒ[subscript VBF]=0.8±0.7, ÎŒ[subscript WH]=1.0±1.6, ÎŒ[subscript ZH]=0.1[superscript +3.7 subscript −0.1], and ÎŒ[subscript t [bar over t] H] =1.6[superscript +2.7 subscript −1.8], for Higgs boson production through gluon fusion, vector-boson fusion, and in association with a W or Z boson or a top-quark pair, respectively. Compared with the previously published ATLAS analysis, the results reported here also benefit from a new energy calibration procedure for photons and the subsequent reduction of the systematic uncertainty on the diphoton mass resolution. No significant deviations from the predictions of the Standard Model are found.European Organization for Nuclear ResearchUnited States. Dept. of EnergyNational Science Foundation (U.S.)Brookhaven National Laborator

    Charged-particle distributions at low transverse momentum in √s=13 13 TeV pp interactions measured with the ATLAS detector at the LHC

    Get PDF
    Measurements of distributions of charged particles produced in proton–proton collisions with a centre-of-mass energy of 13 TeV are presented. The data were recorded by the ATLAS detector at the LHC and correspond to an integrated luminosity of 151 ÎŒb −1 ÎŒb−1 . The particles are required to have a transverse momentum greater than 100 MeV and an absolute pseudorapidity less than 2.5. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity and the dependence of the mean transverse momentum on multiplicity are measured in events containing at least two charged particles satisfying the above kinematic criteria. The results are corrected for detector effects and compared to the predictions from several Monte Carlo event generators

    Measurement of the cross section for inclusive isolated-photon production in pp collisions at √s=13TeV using the ATLAS detector

    Get PDF
    Inclusive isolated-photon production in pp collisions at a centre-of-mass energy of 13TeVis studied with the ATLAS detector at the LHC using a data set with an integrated luminosity of 3.2fb−1. The cross section is measured as a function of the photon transverse energy above 125GeVin different regions of photon pseudorapidity. Next-to-leading-order perturbative QCD and Monte Carlo event-generator predictions are compared to the cross-section measurements and provide an adequate description of the data

    Measurement of W+W− production in association with one jet in proton–proton collisions at sqrt(s) = 8TeV with the ATLAS detector

    Get PDF
    The production of W boson pairs in association with one jet in pp collisions at View the MathML sources=8 TeV is studied using data corresponding to an integrated luminosity of 20.3 fb−1 collected by the ATLAS detector during 2012 at the CERN Large Hadron Collider. The cross section is measured in a fiducial phase-space region defined by the presence of exactly one electron and one muon, missing transverse momentum and exactly one jet with a transverse momentum above 25 GeV and a pseudorapidity of |η|<4.5|η|<4.5. The leptons are required to have opposite electric charge and to pass transverse momentum and pseudorapidity requirements. The fiducial cross section is found to be View the MathML sourceσWWfid,1-jet=136±6(stat)±14(syst)±3(lumi) fb. In combination with a previous measurement restricted to leptonic final states with no associated jets, the fiducial cross section of WW production with zero or one jet is measured to be View the MathML sourceσWWfid,≀1-jet=511±9(stat)±26(syst)±10(lumi) fb. The ratio of fiducial cross sections in final states with one and zero jets is determined to be 0.36±0.050.36±0.05. Finally, a total cross section extrapolated from the fiducial measurement of WW production with zero or one associated jet is reported. The measurements are compared to theoretical predictions and found in good agreement
    • 

    corecore