41 research outputs found

    Substituent effects on the relaxation dynamics of furan, furfural and β-furfural: a combined theoretical and experimental approach

    Get PDF
    For the series furan, furfural and β-furfural we investigated the effect of substituents and their positioning on the photoinduced relaxation dynamics in a combined theoretical and experimental approach. Using time resolved photoelectron spectroscopy with a high intensity probe pulse, we can, for the first time, follow the whole deactivation process of furan through a two photon probe signal. Using the extended 2-electron 2-orbital model [Nenov et al., J. Chem. Phys., 2011, 135, 034304] we explain the formation of one central conical intersection and predict the influence of the aldehyde group of the derivatives on its geometry. This, as well as the relaxation mechanisms from photoexcitation to the final outcome was investigated using a variety of theoretical methods. Complete active space self consistent field was used for on-the-fly calculations while complete active space perturbation theory and coupled cluster theory were used to accurately describe critical configurations. Experiment and theory show the relaxation dynamics of furfural and β-furfural to be slowed down, and together they disclose an additional deactivation pathway, which is attributed to the nO lonepair state introduced with the aldehyde group

    Phospholamban antisense oligonucleotides improve cardiac function in murine cardiomyopathy

    Get PDF
    Heart failure (HF) is a major cause of morbidity and mortality worldwide, highlighting an urgent need for novel treatment options, despite recent improvements. Aberrant Ca(2+) handling is a key feature of HF pathophysiology. Restoring the Ca(2+) regulating machinery is an attractive therapeutic strategy supported by genetic and pharmacological proof of concept studies. Here, we study antisense oligonucleotides (ASOs) as a therapeutic modality, interfering with the PLN/SERCA2a interaction by targeting Pln mRNA for downregulation in the heart of murine HF models. Mice harboring the PLN R14del pathogenic variant recapitulate the human dilated cardiomyopathy (DCM) phenotype; subcutaneous administration of PLN-ASO prevents PLN protein aggregation, cardiac dysfunction, and leads to a 3-fold increase in survival rate. In another genetic DCM mouse model, unrelated to PLN (Cspr3/Mlp(−/−)), PLN-ASO also reverses the HF phenotype. Finally, in rats with myocardial infarction, PLN-ASO treatment prevents progression of left ventricular dilatation and improves left ventricular contractility. Thus, our data establish that antisense inhibition of PLN is an effective strategy in preclinical models of genetic cardiomyopathy as well as ischemia driven HF

    The Cayman Crab Fly Revisited — Phylogeny and Biology of Drosophila endobranchia

    Get PDF
    BACKGROUND: The majority of all known drosophilid flies feed on microbes. The wide spread of microorganisms consequently mean that drosophilids also can be found on a broad range of substrates. One of the more peculiar types of habitat is shown by three species of flies that have colonized land crabs. In spite of their intriguing lifestyle, the crab flies have remained poorly studied. Perhaps the least investigated of the three crab flies is the Cayman Island endemic Drosophila endobranchia. Apart from its life cycle very little is known about this species, including its phylogenetic position, which has remained unresolved due to a cryptic set of characteristics. PRINCIPAL FINDINGS: Based on molecular data, corroborated by a re-analysis of the morphological make up, we have resolved the phylogenetic position of D. endobranchia and show that it somewhat surprisingly belongs to the large Neotropical repleta radiation, and should be considered as an aberrant member of the canalinea species group. Furthermore we also provide additional data on the behavior of these remarkable flies. CONCLUSION: Our findings reveal that the two Caribbean crab flies are not as distantly related as first thought, as both species are members of the derived repleta radiation. That this lineage has given rise to two species with the same odd type of breeding substrate is curious and prompts the question of what aspects of their shared ancestry has made these flies suitable for a life on (and inside) land crabs. Knowledge of the phylogenetic position of D. endobranchia will allow for comparative explorations and will aid in efforts aimed at understanding processes involved in drastic host shifts and extreme specialization

    Pathways from research to sustainable development: insights from ten research projects in sustainability and resilience

    Get PDF
    Drawing on collective experience from ten collaborative research projects focused on the Global South, we identify three major challenges that impede the translation of research on sustainability and resilience into better-informed choices by individuals and policy-makers that in turn can support transformation to a sustainable future. The three challenges comprise: (i) converting knowledge produced during research projects into successful knowledge application; (ii) scaling up knowledge in time when research projects are short-term and potential impacts are long-term; and (iii) scaling up knowledge across space, from local research sites to larger-scale or even global impact. Some potential pathways for funding agencies to overcome these challenges include providing targeted prolonged funding for dissemination and outreach, and facilitating collaboration and coordination across different sites, research teams, and partner organizations. By systematically documenting these challenges, we hope to pave the way for further innovations in the research cycle

    Genetic newborn screening and digital technologies: A project protocol based on a dual approach to shorten the rare diseases diagnostic path in Europe.

    Get PDF
    Since 72% of rare diseases are genetic in origin and mostly paediatrics, genetic newborn screening represents a diagnostic "window of opportunity". Therefore, many gNBS initiatives started in different European countries. Screen4Care is a research project, which resulted of a joint effort between the European Union Commission and the European Federation of Pharmaceutical Industries and Associations. It focuses on genetic newborn screening and artificial intelligence-based tools which will be applied to a large European population of about 25.000 infants. The neonatal screening strategy will be based on targeted sequencing, while whole genome sequencing will be offered to all enrolled infants who may show early symptoms but have resulted negative at the targeted sequencing-based newborn screening. We will leverage artificial intelligence-based algorithms to identify patients using Electronic Health Records (EHR) and to build a repository "symptom checkers" for patients and healthcare providers. S4C will design an equitable, ethical, and sustainable framework for genetic newborn screening and new digital tools, corroborated by a large workout where legal, ethical, and social complexities will be addressed with the intent of making the framework highly and flexibly translatable into the diverse European health systems

    Atomic spectrometry update – a review of advances in environmental analysis

    Full text link
    corecore