327 research outputs found

    Superstatistical random-matrix-theory approach to transition intensities in mixed systems

    Full text link
    We study the fluctuation properties of transition intensities applying a recently proposed generalization of the random matrix theory, which is based on Beck and Cohen's superstatistics. We obtain an analytic expression for the distribution of the reduced transition probabilities that applies to systems undergoing a transition out of chaos. The obtained distribution fits the results of a previous nuclear shell model calculations for some electromagnetic transitions that deviate from the Porter-Thomas distribution. It agrees with the experimental reduced transition probabilities for the 26A nucleus better than the commonly used chi-squared distribution.Comment: 14 pages, 3 figure

    Kappa-deformed random-matrix theory based on Kaniadakis statistics

    Full text link
    We present a possible extension of the random-matrix theory, which is widely used to describe spectral fluctuations of chaotic systems. By considering the Kaniadakis non-Gaussian statistics, characterized by the index {\kappa} (Boltzmann-Gibbs entropy is recovered in the limit {\kappa}\rightarrow0), we propose the non-Gaussian deformations ({\kappa} \neq 0) of the conventional orthogonal and unitary ensembles of random matrices. The joint eigenvalue distributions for the {\kappa}-deformed ensembles are derived by applying the principle maximum entropy to Kaniadakis entropy. The resulting distribution functions are base invarient as they depend on the matrix elements in a trace form. Using these expressions, we introduce a new generalized form of the Wigner surmise valid for nearly-chaotic mixed systems, where a basis-independent description is still expected to hold. We motivate the necessity of such generalization by the need to describe the transition of the spacing distribution from chaos to order, at least in the initial stage. We show several examples about the use of the generalized Wigner surmise to the analysis of the results of a number of previous experiments and numerical experiments. Our results suggest the entropic index {\kappa} as a measure for deviation from the state of chaos. We also introduce a {\kappa}-deformed Porter-Thomas distribution of transition intensities, which fits the experimental data for mixed systems better than the commonly-used gamma-distribution.Comment: 18 pages, 8 figure

    Data Base Design with GIS in Ecosystem Based Multiple Use Forest Management in Artvin, Turkey: A Case Study in Balcı Forest Management Planning Unit

    Get PDF
    In Turkey, the understanding of planning focused on timber production has given its place on Multiple Use Management (MUM). Because the whole infrastructure of forestry with inventory system leading the way depends on timber production, some cases of bottle neck are expected during the transition period. Database design, probably the most important stage during the transition to MUM, together with the digital basic maps making up the basis of this infrastructure constitute the main point of this article. Firstly, the forest management philosophy of Turkey in the past was shortly touched upon in the article. Ecosystem Based Multiple Use Forest Management (EBMUFM) approaches was briefly introduced. The second stage of the process of EBMUFM, database design was described by examining the classical planning infrastructure and the coverage to be produced and consumed were suggested in the form of lists. At the application stage, two different geographical databases were established with GIS in Balcı Planning Unit of the years 1984 and 2006. Following that the related basic maps are produced. Timely diversity of the planning unit of 20 years is put forward comparatively with regard to the stand parameters such as tree types, age class, development stage, canopy closure, mixture, volume and increment

    L'impact de l'alimentation sur les troubles du sommeil: travail de Bachelor

    Get PDF
    Introduction : Notre cerveau est constamment sollicité lors de nos journées de travail ou de congé. En effet, la plupart des citoyens ont un rythme de vie souvent trop rapide et une durée de sommeil raccourcie. Pourtant le repos est indispensable à une qualité de vie optimale et une bonne santé. Un facteur que chacun rencontre dans son quotidien peut influencer, positivement ou négativement le sommeil : l’alimentation. Objectifs : Notre revue quasi-systématique a pour objectifs d’étudier l’impact de l’alimentation sur les troubles du sommeil, de connaître la prise en charge nutritionnelle actuelle dans les centres du sommeil en Suisse Romande et de comparer brièvement la littérature avec les pratiques dans ces centres. Le but étant d’émettre des recommandations de prise en charge nutritionnelle pour améliorer ces symptômes de troubles du sommeil. Méthode : Les critères d’inclusion principaux étaient la présence de troubles du sommeil ainsi qu’une population âgée entre 19 et 69 ans compris. Le critère d’exclusion principal était l’apnée du sommeil. Nous avons parallèlement interviewé deux soignants dans deux centres du sommeil différents. Résultats : La supplémentation en vitamine D permettrait d’améliorer la qualité et la durée du sommeil. De plus, une modification des habitudes alimentaires menant à une perte de poids diminuerait la durée d’endormissement. Deux kiwis consommés crus une heure avant le coucher réduiraient les troubles du sommeil. La répartition des macronutriments sur l’apport énergétique total aurait également un impact sur les troubles du sommeil. Dans les centres du sommeil, les diététicien-ne-s ne sont pas représentés et aucune recommandation nutritionnelle officielle n’est utilisée dans la prise en charge. Conclusion : L’alimentation a un impact sur la qualité du sommeil chez les personnes atteintes de troubles du sommeil mais, à ce jour, il est difficile d’émettre des recommandations claires et spécifiques. Globalement, une alimentation équilibrée avec des produits locaux et de saison ainsi qu’un poids dans les normes sont recommandés. Selon nous, il serait opportun d’avoir la présence de diététicien-ne-s dans un centre du sommeil

    Landscape-Scale Conservation And Management Of Montane Wildlife: Contemporary Climate May Be Changing The Rules

    Get PDF
    Both paleontological and contemporary results have suggested that montane ecosystems to be systems of relatively rapid faunal change compared to many valley-bottom counterparts. In addition to experiencing greater magnitudes of contemporary change in climatic parameters than species in other ecosystems, mountain-dwelling wildlife must also accommodate often greater intra-annual swings in temperature and wind speeds, poorly developed soils, and generally harsher conditions. Research on a mountain-dwelling mammal species across 15 yrs of contemporary data and historical records from 1898-1956 suggest that pace of local extinctions and rate of upslope retraction have been markedly more rapid and governed by markedly different dynamics in the last decade than during the 20th century. This may mean that understanding past dynamics of species losses may not always help predict patterns of future loss. Given the importance of clinal variability and ecotypic variation, phenotypic plasticity, behavioral plasticity, and variation in climatic conditions, for widely-distributed species’ geographic ranges to be determined by different factors in different portions of their range is not uncommon. Consequently, greatest progress in understanding distributionalchange phenomena will occur with coordinated, landscape-scale research and monitoring. Landscape Conservation Cooperatives and Climate Science Centers are newly emerging efforts that may contribute greatly to such broad-scale investigations, e.g., climate-wildlife relationships. Based on our empirical findings and our review of related literature, we propose tenets that may serve as foundational starting points for mechanism-based research at broad scales to inform management and conservation of diverse montane wildlife and the ecosystem components with which they interact

    A Multi-Configuration Mixing Approach with Symmetry-Projected Complex Hartree-Fock-Bogoliubov Determinants

    Full text link
    A multi-configuration mixing approach built on essentially complex, symmetry-projected Hartree-Fock-Bogoliubov (HFB) mean fields is introduced. The mean fields are obtained by variation after projection. The configuration space consists out of the symmetry-projected HFB vacuum and the symmetry-projected two-quasiparticle excitations for even, and the symmetry-projected one-quasiparticle excitations for odd A systems. The underlying complex HFB transformations are assumed to be time-reversal invariant and axially symmetric. The model allows nuclear structure calculations in large model spaces with arbitrary two-body interactions. The approach has been applied to 20^{20}Ne and 22^{22}Ne. Good agreement with the exact shell model results and considerable improvement with respect to older calculations, in which only real HFB transformations were admitted, is obtained.Comment: 30 pages LaTeX file, 4 Postscript figure

    Remote sensing and geographic information systems: charting Sin Nombre virus infections in deer mice.

    Get PDF
    We tested environmental data from remote sensing and geographic information system maps as indicators of Sin Nombre virus (SNV) infections in deer mouse (Peromyscus maniculatus) populations in the Walker River Basin, Nevada and California. We determined by serologic testing the presence of SNV infections in deer mice from 144 field sites. We used remote sensing and geographic information systems data to characterize the vegetation type and density, elevation, slope, and hydrologic features of each site. The data retroactively predicted infection status of deer mice with up to 80% accuracy. If models of SNV temporal dynamics can be integrated with baseline spatial models, human risk for infection may be assessed with reasonable accuracy

    Metabolic, inflammatory and haemostatic effects of a low-dose continuous combined HRT in women with type 2 diabetes: potentially safer with respect to vascular risk?

    Get PDF
    BACKGROUND Conventional hormone replacement therapy (HRT) containing conjugated equine oestrogen (CEE) and medroxyprogesterone acetate (MPA) increases triglyceride, C- reactive protein (CRP) and coagulation Factor VII concentrations, potentially explaining their increased coronary heart disease (CHD) and stroke risk. OBJECTIVE To assess the metabolic effects of a continuous combined HRT containing 1 mg oestradiol and 0.5 mg norethisterone or matching placebo. DESIGN Double-blind, randomized placebo-controlled trial. PATIENTS Fifty women with type 2 diabetes. MEASUREMENTS Classical and novel risk factors for vascular disease. RESULTS Triglyceride concentration was not altered (P = 0.31, change in active arm relative to placebo) and low-density lipoprotein (LDL) cholesterol concentration declined 13% (P = 0.018). IL-6 concentration (mean difference -1.42 pg/ml, 95% CI: -2.55 to - 0.29 IU/dl, P = 0.015), Factor VII (-32 IU/dl, -43 to -21 IU/l, P lt 0.001) and tissue plasminogen activator antigen (by 13%, P = 0.005) concentrations fell, but CRP was not significantly altered (P = 0.62). Fasting glucose (P = 0.026) also declined significantly, but there are no significant effects on HBA1c, Factor IX or APC resistance. CONCLUSIONS HRT containing 1 mg oestradiol and 0.5 mg norethisterone may avoid the adverse metabolic effects potentially implicated in the elevated CHD and stroke risk induced by conventional higher dose HRT. This type of preparation may therefore be more suitable than conventional HRT for women at elevated CHD risk such as those with type 2 diabetes. Large randomized controlled trials of such low dose preparations, powered for cardiovascular end points, are now needed

    A Variational Method in Out of Equilibrium Physical Systems

    Full text link
    A variational principle is further developed for out of equilibrium dynamical systems by using the concept of maximum entropy. With this new formulation it is obtained a set of two first-order differential equations, revealing the same formal symplectic structure shared by classical mechanics, fluid mechanics and thermodynamics. In particular, it is obtained an extended equation of motion for a rotating dynamical system, from where it emerges a kind of topological torsion current of the form ϵijkAjωk\epsilon_{ijk} A_j \omega_k, with AjA_j and ωk\omega_k denoting components of the vector potential (gravitational or/and electromagnetic) and ω\omega is the angular velocity of the accelerated frame. In addition, it is derived a special form of Umov-Poynting's theorem for rotating gravito-electromagnetic systems, and obtained a general condition of equilibrium for a rotating plasma. The variational method is then applied to clarify the working mechanism of some particular devices, such as the Bennett pinch and vacuum arcs, to calculate the power extraction from an hurricane, and to discuss the effect of transport angular momentum on the radiactive heating of planetary atmospheres. This development is seen to be advantageous and opens options for systematic improvements.Comment: 22 pages, 1 figure, submitted to review, added one referenc
    corecore