972 research outputs found

    Structural Simplification of Bedaquiline: the Discovery of 3-(4-(N,N-dimethylaminomethyl)phenyl)quinoline Derived Antitubercular Lead Compounds

    Get PDF
    Bedaquiline (BDQ) is a novel and highly potent last-line antituberculosis drug that was approved by the US FDA in 2013. Owing to its stereo-structural complexity, chemical synthesis and compound optimization are rather difficult and expensive. This study describes the structural simplification of bedaquiline while preserving antitubercular activity. The compound's structure was split into fragments and reassembled in various combinations while replacing the two chiral carbon atoms with an achiral linkage instead. Four series of analogues were designed; these candidates retained their potent antitubercular activity at sub-microgram per mL concentrations against both sensitive and multidrug-resistant (MDR) Mycobacterium tuberculosis strains. Six out of the top nine MIC-ranked candidates were found to inhibit mycobacterial ATP synthesis activity with IC50 values between 20 and 40 μm, one had IC50>66 μm, and two showed no inhibition, despite their antitubercular activity. These results provide a basis for the development of chemically less complex, lower-cost bedaquiline derivatives and describe the identification of two derivatives with antitubercular activity against non-ATP synthase related targets

    Chemical physics: The standing of a mature discipline

    Get PDF
    It is always promising and enticing to start a new editorial task in the scientific arena and the launch of the Chemistry Central Journal is no exception. The different thematic sections making up this journal are quite representative of the whole chemistry enterprise. However, one of them has a special relevance. In fact, Chemical Physics (CP) is the most general and it embodies a wide diversity of issues. Of particular importance at the launch of this groundbreaking new journal is the confidence of the Section Editor in BioMed Central (owners of Chemistry Central) as publishers, and from Chemistry Central to its Editorial Board. I feel deeply grateful for this new assignment and I hope to be able to perform a thorough job in editing this section. Below, I make my request to you as potential authors and reviewers

    Corticosterone Potentiation of Cocaine-Induced Reinstatement of Conditioned Place Preference in Mice is Mediated by Blockade of the Organic Cation Transporter 3

    Get PDF
    The mechanisms by which stressful life events increase the risk of relapse in recovering cocaine addicts are not well understood. We previously reported that stress, via elevated corticosterone, potentiates cocaine-primed reinstatement of cocaine seeking following self-administration in rats and that this potentiation appears to involve corticosterone-induced blockade of dopamine clearance via the organic cation transporter 3 (OCT3). In the present study, we use a conditioned place preference/reinstatement paradigm in mice to directly test the hypothesis that corticosterone potentiates cocaine-primed reinstatement by blockade of OCT3. Consistent with our findings following self-administration in rats, pretreatment of male C57/BL6 mice with corticosterone (using a dose that reproduced stress-level plasma concentrations) potentiated cocaine-primed reinstatement of extinguished cocaine-induced conditioned place preference. Corticosterone failed to re-establish extinguished preference alone but produced a leftward shift in the dose–response curve for cocaine-primed reinstatement. A similar potentiating effect was observed upon pretreatment of mice with the non-glucocorticoid OCT3 blocker, normetanephrine. To determine the role of OCT3 blockade in these effects, we examined the abilities of corticosterone and normetanephrine to potentiate cocaine-primed reinstatement in OCT3-deficient and wild-type mice. Conditioned place preference, extinction and reinstatement of extinguished preference in response to low-dose cocaine administration did not differ between genotypes. However, corticosterone and normetanephrine failed to potentiate cocaine-primed reinstatement in OCT3-deficient mice. Together, these data provide the first direct evidence that the interaction of corticosterone with OCT3 mediates corticosterone effects on drug-seeking behavior and establish OCT3 function as an important determinant of susceptibility to cocaine use

    Combinations of β-lactam or aminoglycoside antibiotics with plectasin are synergistic against methicillin-sensitive and methicillin-resistant Staphylococcus aureus.

    Get PDF
    Bacterial infections remain the leading killer worldwide which is worsened by the continuous emergence of antibiotic resistance. In particular, methicillin-sensitive (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA) are prevalent and the latter can be difficult to treat. The traditional strategy of novel therapeutic drug development inevitably leads to emergence of resistant strains, rendering the new drugs ineffective. Therefore, rejuvenating the therapeutic potentials of existing antibiotics offers an attractive novel strategy. Plectasin, a defensin antimicrobial peptide, potentiates the activities of other antibiotics such as β-lactams, aminoglycosides and glycopeptides against MSSA and MRSA. We performed in vitro and in vivo investigations to test against genetically diverse clinical isolates of MSSA (n = 101) and MRSA (n = 115). Minimum inhibitory concentrations (MIC) were determined by the broth microdilution method. The effects of combining plectasin with β-lactams, aminoglycosides and glycopeptides were examined using the chequerboard method and time kill curves. A murine neutropenic thigh model and a murine peritoneal infection model were used to test the effect of combination in vivo. Determined by factional inhibitory concentration index (FICI), plectasin in combination with aminoglycosides (gentamicin, neomycin or amikacin) displayed synergistic effects in 76-78% of MSSA and MRSA. A similar synergistic response was observed when plectasin was combined with β-lactams (penicillin, amoxicillin or flucloxacillin) in 87-89% of MSSA and MRSA. Interestingly, no such interaction was observed when plectasin was paired with vancomycin. Time kill analysis also demonstrated significant synergistic activities when plectasin was combined with amoxicillin, gentamicin or neomycin. In the murine models, plectasin at doses as low as 8 mg/kg augmented the activities of amoxicillin and gentamicin in successful treatment of MSSA and MRSA infections. We demonstrated that plectasin strongly rejuvenates the therapeutic potencies of existing antibiotics in vitro and in vivo. This is a novel strategy that can have major clinical implications in our fight against bacterial infections

    Effect of MWCNTs on Gastric Emptying in Mice

    Get PDF
    After making model of gastric functional disorder (FD), part of model mice were injected intravenously (i.v.) with oxide multi-walled carbon nanotubes (oMWCNTs) to investigate effect of carbon nanotubes on gastric emptying. The results showed that NO content in stomach, compared with model group, was decreased significantly and close to normal level post-injection with oMWCNTs (500 and 800 μg/mouse). In contrast to FD or normal groups, the content of acetylcholine (Ach) in stomach was increased obviously in injection group with 500 or 800 μg/mouse of oMWCNTs. The kinetic curve of emptying was fitted to calculate gastric motility factor k; the results showed that the k of injection group was much higher than FD and normal. In other words, the gastric motility of FD mice was enhanced via injection with oMWCNTs. In certain dosage, oMWCNTs could improve gastric emptying and motility

    Pt-decorated nanoporous gold for glucose electrooxidation in neutral and alkaline solutions

    Get PDF
    Exploiting electrocatalysts with high activity for glucose oxidation is of central importance for practical applications such as glucose fuel cell. Pt-decorated nanoporous gold (NPG-Pt), created by depositing a thin layer of Pt on NPG surface, was proposed as an active electrode for glucose electrooxidation in neutral and alkaline solutions. The structure and surface properties of NPG-Pt were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD), and cyclic voltammetry (CV). The electrocatalytic activity toward glucose oxidation in neutral and alkaline solutions was evaluated, which was found to depend strongly on the surface structure of NPG-Pt. A direct glucose fuel cell (DGFC) was performed based on the novel membrane electrode materials. With a low precious metal load of less than 0.3 mg cm-2 Au and 60 μg cm-2 Pt in anode and commercial Pt/C in cathode, the performance of DGFC in alkaline is much better than that in neutral condition

    Morphological alterations of exogenous surfactant inhibited by meconium can be prevented by dextran

    Get PDF
    BACKGROUND: Surfactant dysfunction due to inhibition is involved in the pathophysiology of meconium aspiration syndrome. Dextran addition has been shown to reverse exogenous surfactant inactivation by meconium, but the precise mechanisms and the morphological correlate of this effect are yet unknown. Morphological surfactant analysis by transmission electron microscopy (TEM) and stereology allows the differentiation of active (large aggregates = LA) and inactive (small aggregates = SA) subtypes. METHODS: To determine the in vitro effects of meconium and dextran addition on the morphology of a modified porcine natural surfactant (Curosurf), Curosurf samples were either incubated alone or together with meconium or with meconium and dextran, fixed and processed for TEM. Volume fractions of surfactant subtypes [lamellar body-like forms (LBL), multilamellar vesicles (MV), unilamellar vesicles (UV)] were determined stereologically. RESULTS: All preparations contained LBL and MV (corresponding to LA) as well as UV (corresponding to SA). The volume fraction of UV increased with addition of meconium and decreased with further addition of dextran. Correspondingly, the UV/(LBL+MV) ratio (resembling the SA/LA ratio) increased when meconium was added and decreased when dextran was added to the surfactant-meconium mixture. CONCLUSION: Meconium causes alterations in the ultrastructural composition of Curosurf that can be visualized and analyzed by TEM and stereology. These alterations resemble an increase in the SA/LA ratio and are paralleled by an increase in minimum surface tension. Dextran prevents these effects and may therefore be a useful additive to exogenous surfactant preparations to preserve their structural and functional integrity, thereby improving their resistance to inactivation

    Biofunctionalization of zinc oxide nanowires for DNA sensory applications

    Get PDF
    We report on the biofunctionalization of zinc oxide nanowires for the attachment of DNA target molecules on the nanowire surface. With the organosilane glycidyloxypropyltrimethoxysilane acting as a bifunctional linker, amino-modified capture molecule oligonucleotides have been immobilized on the nanowire surface. The dye-marked DNA molecules were detected via fluorescence microscopy, and our results reveal a successful attachment of DNA capture molecules onto the nanowire surface. The electrical field effect induced by the negatively charged attached DNA molecules should be able to control the electrical properties of the nanowires and gives way to a ZnO nanowire-based biosensing device
    • …
    corecore