386 research outputs found

    Characterizations of how species mediate ecosystem properties require more comprehensive functional effect descriptors

    Get PDF
    The importance of individual species in mediating ecosystem process and functioning is generally accepted, but categorical descriptors that summarize species-specific contributions to ecosystems tend to reference a limited number of biological traits and underestimate the importance of how organisms interact with their environment. Here, we show how three functionally contrasting sediment-dwelling marine invertebrates affect fluid and particle transport - important processes in mediating nutrient cycling - and use high-resolution reconstructions of burrow geometry to determine the extent and nature of biogenic modification. We find that individual functional effect descriptors fall short of being able to adequately characterize how species mediate the stocks and flows of important ecosystem properties and that, in contrary to common practice and understanding, they are not substitutable with one another because they emphasize different aspects of species activity and behavior. When information derived from these metrics is combined with knowledge of how species behave and modify their environment, however, detailed mechanistic information emerges that increases the likelihood that a species functional standing will be appropriately summarized. Our study provides evidence that more comprehensive functional effect descriptors are required if they are to be of value to those tasked with projecting how altered biodiversity will influence future ecosystems

    Association of Communication Between Hospital-based Physicians and Primary Care Providers with Patient Outcomes

    Get PDF
    Background: Patients admitted to general medicine inpatient services are increasingly cared for by hospital-based physicians rather than their primary care providers (PCPs). This separation of hospital and ambulatory care may result in important care discontinuities after discharge. We sought to determine whether communication between hospital-based physicians and PCPs influences patient outcomes. Methods: We approached consecutive patients admitted to general medicine services at six US academic centers from July 2001 to June 2003. A random sample of the PCPs for consented patients was contacted 2 weeks after patient discharge and surveyed about communication with the hospital medical team. Responses were linked with the 30-day composite patient outcomes of mortality, hospital readmission, and emergency department (ED) visits obtained through follow-up telephone survey and National Death Index search. We used hierarchical multi-variable logistic regression to model whether communication with the patient’s PCP was associated with the 30-day composite outcome. Results: A total of 1,772 PCPs for 2,336 patients were surveyed with 908 PCPs responses and complete patient follow-up available for 1,078 patients. The PCPs for 834 patients (77%) were aware that their patient had been admitted to the hospital. Of these, direct communication between PCPs and inpatient physicians took place for 194 patients (23%), and a discharge summary was available within 2 weeks of discharge for 347 patients (42%). Within 30 days of discharge, 233 (22%) patients died, were readmitted to the hospital, or visited an ED. In adjusted analyses, no relationship was seen between the composite outcome and direct physician communication (adjusted odds ratio 0.87, 95% confidence interval 0.56 – 1.34), the presence of a discharge summary (0.84, 95% CI 0.57–1.22), or PCP awareness of the index hospitalization (1.08, 95% CI 0.73–1.59). Conclusion: Analysis of communication between PCPs and inpatient medical teams revealed much room for improvement. Although communication during handoffs of care is important, we were not able to find a relationship between several aspects of communication and associated adverse clinical outcomes in this multi-center patient sample

    Potential new genes for resistance to Mycosphaerella graminicola identified in Triticum aestivum x Lophopyrum elongatum disomic substitution lines.

    Get PDF
    Lophopyrum species carry many desirable agronomic traits, including disease resistance, which can be transferred towheat by interspecific hybridization. To identify potentially new genes for disease and insect resistance carried by individual Lophopyrum chromosomes, 19 of 21 possible wheat cultivar Chinese Spring 9 Lophopyrum elongatum disomic substitution lines were tested for resistance to barley yellow dwarf virus (BYDV), cereal yellow dwarf virus (CYDV), the Hessian fly Mayetiola destructor, and the fungal pathogens Blumeria graminis and Mycosphaerella graminicola (asexual stage: Septoria tritici). Low resistance to BYDV occurred in some of the disomic substitution lines, but viral titers were significantly higher than those of two Lophopyrum species tested. This suggested that genes on more than one Lophopyrum chromosome are required for complete resistance to this virus. A potentially new gene for resistance to CYDV was detected on wheatgrass chromosome 3E. All of the substitution lines were susceptible to Mayetiola destructor and one strain of B. graminis. Disomic substitution lines containing wheatgrass chromosomes 1E and 6E were significantly more resistant to M. graminicola compared to Chinese Spring. Although neither chromosome by itself conferred resistance as high as that in the wheatgrass parent, they do appear to contain potentially new genes for resistance against this pathogen that could be useful for future plant-improvement programs

    Sensitive Commercial NASBA Assay for the Detection of Respiratory Syncytial Virus in Clinical Specimen

    Get PDF
    The aim of the study was to evaluate the usability of three diagnostic procedures for the detection of respiratory syncytial virus in clinical samples. Therefore, the FDA cleared CE marked NOW® RSV ELISA, the NucliSENS® EasyQ RSV A+B NASBA, and a literature based inhouse RT-PCR protocol were compared for their relative sensitivities. Thereby, NASBA turned out to be the most sensitive method with a total number of 80 RSV positive samples out of a cohort of 251 nasopharyngeal washings from patients suffering from clinical symptoms, followed by the inhouse RT-PCR (62/251) and ELISA (52/251). Thus, NASBA may serve as a rapid and highly sensitive alternative for RSV diagnostics

    A phase i study of daily treatment with a ceramide-dominant triple lipid mixture commencing in neonates

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Defects in skin barrier function are associated with an increase risk of eczema and atopic sensitisation. Ceramide-dominant triple lipid mixture may improve and maintain the infant skin barrier function, and if shown to be safe and feasible, may therefore offer an effective approach to reduce the incidence of eczema and subsequent atopic sensitisation. We sort to assess the safety and compliance with daily application of a ceramide-dominant triple lipid formula (EpiCeram™) commencing in the neonatal period for the prevention of eczema.</p> <p>Methods</p> <p>Ten infants (0-4 weeks of age) with a family history of allergic disease were recruited into an open-label, phase one trial of daily application of EpiCeram™ for six weeks. The primary outcomes were rate of compliance and adverse events. Data on development of eczema, and physiological properties of the skin (transepidermal water loss, hydration, and surface pH) were also measured.</p> <p>Results</p> <p>Eighty percent (8/10) of mothers applied the study cream on 80% or more of days during the six week intervention period. Though a number of adverse events unrelated to study product were reported, there were no adverse skin reactions to the study cream.</p> <p>Conclusions</p> <p>These preliminary results support the safety and parental compliance with daily applications of a ceramide-dominant formula for the prevention of eczema, providing the necessary ground work for a randomised clinical trial to evaluate EpiCeram™ for the prevention of eczema.</p> <p>Trial registration</p> <p>The study was listed at the Australian/New Zealand Clinical Trial Registry (ANZCTR): reg. no. <a href="http://www.anzctr.org.au/ACTRN12609000727246.aspx">ACTRN12609000727246</a>.</p

    Perturbing Dynamin Reveals Potent Effects on the Drosophila Circadian Clock

    Get PDF
    BACKGROUND: Transcriptional feedback loops are central to circadian clock function. However, the role of neural activity and membrane events in molecular rhythms in the fruit fly Drosophila is unclear. To address this question, we expressed a temperature-sensitive, dominant negative allele of the fly homolog of dynamin called shibire(ts1) (shi(ts1)), an active component in membrane vesicle scission. PRINCIPAL FINDINGS: Broad expression in clock cells resulted in unexpectedly long, robust periods (>28 hours) comparable to perturbation of core clock components, suggesting an unappreciated role of membrane dynamics in setting period. Expression in the pacemaker lateral ventral neurons (LNv) was necessary and sufficient for this effect. Manipulation of other endocytic components exacerbated shi(ts1)'s behavioral effects, suggesting its mechanism is specific to endocytic regulation. PKA overexpression rescued period effects suggesting shi(ts1) may downregulate PKA pathways. Levels of the clock component PERIOD were reduced in the shi(ts1)-expressing pacemaker small LNv of flies held at a fully restrictive temperature (29 degrees C). Less restrictive conditions (25 degrees C) delayed cycling proportional to observed behavioral changes. Levels of the neuropeptide PIGMENT-DISPERSING FACTOR (PDF), the only known LNv neurotransmitter, were also reduced, but PERIOD cycling was still delayed in flies lacking PDF, implicating a PDF-independent process. Further, shi(ts1) expression in the eye also results in reduced PER protein and per and vri transcript levels, suggesting that shibire-dependent signaling extends to peripheral clocks. The level of nuclear CLK, transcriptional activator of many core clock genes, is also reduced in shi(ts1) flies, and Clk overexpression suppresses the period-altering effects of shi(ts1). CONCLUSIONS: We propose that membrane protein turnover through endocytic regulation of PKA pathways modulates the core clock by altering CLK levels and/or activity. These results suggest an important role for membrane scission in setting circadian period

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Input-specific control of reward and aversion in the ventral tegmental area

    Get PDF
    Ventral tegmental area (VTA) dopamine neurons have important roles in adaptive and pathological brain functions related to reward and motivation. However, it is unknown whether subpopulations of VTA dopamine neurons participate in distinct circuits that encode different motivational signatures, and whether inputs to the VTA differentially modulate such circuits. Here we show that, because of differences in synaptic connectivity, activation of inputs to the VTA from the laterodorsal tegmentum and the lateral habenula elicit reward and aversion in mice, respectively. Laterodorsal tegmentum neurons preferentially synapse on dopamine neurons projecting to the nucleus accumbens lateral shell, whereas lateral habenula neurons synapse primarily on dopamine neurons projecting to the medial prefrontal cortex as well as on GABAergic (γ-aminobutyric-acid-containing) neurons in the rostromedial tegmental nucleus. These results establish that distinct VTA circuits generate reward and aversion, and thereby provide a new framework for understanding the circuit basis of adaptive and pathological motivated behaviours.National Institutes of Health (U.S.) (Grant NIH NS069375)JPB FoundationNational Institute of Mental Health (U.S.

    From bit to it: How a complex metabolic network transforms information into living matter

    Get PDF
    Organisms live and die by the amount of information they acquire about their environment. The systems analysis of complex metabolic networks allows us to ask how such information translates into fitness. A metabolic network transforms nutrients into biomass. The better it uses information on available nutrient availability, the faster it will allow a cell to divide. I here use metabolic flux balance analysis to show that the accuracy I (in bits) with which a yeast cell can sense a limiting nutrient's availability relates logarithmically to fitness as indicated by biomass yield and cell division rate. For microbes like yeast, natural selection can resolve fitness differences of genetic variants smaller than 10-6, meaning that cells would need to estimate nutrient concentrations to very high accuracy (greater than 22 bits) to ensure optimal growth. I argue that such accuracies are not achievable in practice. Natural selection may thus face fundamental limitations in maximizing the information processing capacity of cells. The analysis of metabolic networks opens a door to understanding cellular biology from a quantitative, information-theoretic perspective
    corecore