9 research outputs found

    Measurement of event-shape observables in Z→ℓ+ℓ− events in pp collisions at √ s=7 TeV with the ATLAS detector at the LHC

    Get PDF
    Event-shape observables measured using charged particles in inclusive ZZ-boson events are presented, using the electron and muon decay modes of the ZZ bosons. The measurements are based on an integrated luminosity of 1.1fb−11.1 {\rm fb}^{-1} of proton--proton collisions recorded by the ATLAS detector at the LHC at a centre-of-mass energy s=7\sqrt{s}=7 TeV. Charged-particle distributions, excluding the lepton--antilepton pair from the ZZ-boson decay, are measured in different ranges of transverse momentum of the ZZ boson. Distributions include multiplicity, scalar sum of transverse momenta, beam thrust, transverse thrust, spherocity, and F\mathcal{F}-parameter, which are in particular sensitive to properties of the underlying event at small values of the ZZ-boson transverse momentum. The Sherpa event generator shows larger deviations from the measured observables than Pythia8 and Herwig7. Typically, all three Monte Carlo generators provide predictions that are in better agreement with the data at high ZZ-boson transverse momenta than at low ZZ-boson transverse momenta and for the observables that are less sensitive to the number of charged particles in the event.Comment: 36 pages plus author list + cover page (54 pages total), 14 figures, 4 tables, submitted to EPJC, All figures including auxiliary figures are available at http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/STDM-2014-0

    First measurement of Ξ<inf>13</inf> from delayed neutron capture on hydrogen in the Double Chooz experiment

    Get PDF
    The Double Chooz experiment has determined the value of the neutrino oscillation parameter Ξ13 from an analysis of inverse beta decay interactions with neutron capture on hydrogen. This analysis uses a three times larger fiducial volume than the standard Double Chooz assessment, which is restricted to a region doped with gadolinium (Gd), yielding an exposure of 113.1 GW-ton-years. The data sample used in this analysis is distinct from that of the Gd analysis, and the systematic uncertainties are also largely independent, with some exceptions, such as the reactor neutrino flux prediction. A combined rate- and energy-dependent fit finds sin22Ξ13=0.097±0.034 (stat.)±0.034 (syst.), excluding the no-oscillation hypothesis at 2.0. This result is consistent with previous measurements of sin22Ξ13

    Background-independent Measurement Of Ξ13 In Double Chooz

    No full text
    The oscillation results published by the Double Chooz Collaboration in 2011 and 2012 rely on background models substantiated by reactor-on data. In this analysis, we present a background-model-independent measurement of the mixing angle Ξ13 by including 7.53 days of reactor-off data. A global fit of the observed antineutrino rates for different reactor power conditions is performed, yielding a measurement of both Ξ13 and the total background rate. The results on the mixing angle are improved significantly by including the reactor-off data in the fit, as it provides a direct measurement of the total background rate. This reactor rate modulation analysis considers antineutrino candidates with neutron captures on both Gd and H, whose combination yields sin2(2Ξ13) = 0.102 ± 0.028(stat.) ± 0.033(syst.). The results presented in this study are fully consistent with the ones already published by Double Chooz, achieving a competitive precision. They provide, for the first time, a determination of Ξ13 that does not depend on a background model. © 2014 The Authors

    Background-independent measurement of <mml:math altimg="si1.gif" overflow="scroll" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/xml/common/dtd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:cals="http://www.elsevier.com/xml/common/cals/dtd" xmlns:sa="http://www.elsevier.com/xml/common/struct-aff/dtd"><mml:msub><mml:mrow><mml:mi>Ξ</mml:mi></mml:mrow><mml:mrow><mml:mn>13</mml:mn></mml:mrow></mml:msub></mml:math> in Double Chooz

    No full text

    Erratum To: Improved Measurements Of The Neutrino Mixing Angle Ξ13with The Double Chooz Detector[inlinemediaobject Not Available: See Fulltext.][jhep, 10, (2014), 086]

    No full text
    [No abstract available]2015

    Search for a heavy Standard Model Higgs boson in the channel H→ZZ→l+l−qqˉH\rightarrow ZZ\rightarrow l^{+}l^{-} q\bar{q} using the ATLAS detector

    Get PDF
    A search for a heavy Standard Model Higgs boson decaying via H->ZZ->llqq, where l=e,mu, is presented. The search is performed using a data set of pp collisions at sqrt(s)=7 TeV, corresponding to an integrated luminosity of 1.04 fb^-1 collected in 2011 by the ATLAS detector at the CERN LHC collider. No significant excess of events above the estimated background is found. Upper limits at 95% confidence level on the production cross section (relative to that expected from the Standard Model) of a Higgs boson with a mass in the range between 200 and 600 GeV are derived. Within this mass range, there is at present insufficient sensitivity to exclude a Standard Model Higgs boson. For a Higgs boson with a mass of 360 GeV, where the sensitivity is maximal, the observed and expected cross section upper limits are factors of 1.7 and 2.7, respectively, larger than the Standard Model prediction.Comment: 11 pages plus author list (26 pages total), 4 figures, 1 table, final version to appear in Physics Letters

    Charged-particle multiplicities in <i>pp</i> interactions at &#8730;s = 900 GeV measured with the ATLAS detector at the LHC

    No full text
    The first measurements from proton–proton collisions recorded with the ATLAS detector at the LHC are presented. Data were collected in December 2009 using a minimum-bias trigger during collisions at a centre-of-mass energy of 900 GeV. The charged-particle multiplicity, its dependence on transverse momentum and pseudorapidity, and the relationship between mean transverse momentum and charged-particle multiplicity are measured for events with at least one charged particle in the kinematic range |η|&#60;2.5 and pT&#62;500 MeV. The measurements are compared to Monte Carlo models of proton–proton collisions and to results from other experiments at the same centre-of-mass energy. The charged-particle multiplicity per event and unit of pseudorapidity at η=0 is measured to be1.333&#177;0.003(stat.)&#177;0.040(syst.), which is 5–15% higher than the Monte Carlo models predict

    Measurement of the isolated diphoton cross section in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    No full text
    15 pages plus author list (27 pages total), 9 figures, 2 tables, submitted to Phys. Rev. DThe ATLAS experiment has measured the production cross-section of events with two isolated photons in the final state, in proton-proton collisions at sqrt(s) = 7 TeV. The full data set acquired in 2010 is used, corresponding to an integrated luminosity of 37 pb-1. The background, consisting of hadronic jets and isolated electrons, is estimated with fully data-driven techniques and subtracted. The differential cross-sections, as functions of the di-photon mass, total transverse momentum and azimuthal separation, are presented and compared to the predictions of next-to-leading-order QCD

    The ATLAS experiment at the CERN Large Hadron Collider

    Get PDF
    The ATLAS detector as installed in its experimental cavern at point 1 at CERN is described in this paper. A brief overview of the expected performance of the detector when the Large Hadron Collider begins operation is also presented
    corecore