1,069 research outputs found
Distributed Testing of Excluded Subgraphs
We study property testing in the context of distributed computing, under the
classical CONGEST model. It is known that testing whether a graph is
triangle-free can be done in a constant number of rounds, where the constant
depends on how far the input graph is from being triangle-free. We show that,
for every connected 4-node graph H, testing whether a graph is H-free can be
done in a constant number of rounds too. The constant also depends on how far
the input graph is from being H-free, and the dependence is identical to the
one in the case of testing triangles. Hence, in particular, testing whether a
graph is K_4-free, and testing whether a graph is C_4-free can be done in a
constant number of rounds (where K_k denotes the k-node clique, and C_k denotes
the k-node cycle). On the other hand, we show that testing K_k-freeness and
C_k-freeness for k>4 appear to be much harder. Specifically, we investigate two
natural types of generic algorithms for testing H-freeness, called DFS tester
and BFS tester. The latter captures the previously known algorithm to test the
presence of triangles, while the former captures our generic algorithm to test
the presence of a 4-node graph pattern H. We prove that both DFS and BFS
testers fail to test K_k-freeness and C_k-freeness in a constant number of
rounds for k>4
Randomized Local Network Computing
International audienceIn this paper, we carry on investigating the line of research questioning the power of randomization for the design of distributed algorithms. In their seminal paper, Naor and Stockmeyer [STOC 1993] established that, in the context of network computing, in which all nodes execute the same algorithm in parallel, any construction task that can be solved locally by a randomized Monte-Carlo algorithm can also be solved locally by a deterministic algorithm. This result however holds in a specific context. In particular, it holds only for distributed tasks whose solutions that can be locally checked by a deterministic algorithm. In this paper, we extend the result of Naor and Stockmeyer to a wider class of tasks. Specifically, we prove that the same derandomization result holds for every task whose solutions can be locally checked using a 2-sided error randomized Monte-Carlo algorithm. This extension finds applications to, e.g., the design of lower bounds for construction tasks which tolerate that some nodes compute incorrect values. In a nutshell, we show that randomization does not help for solving such resilient tasks
Influence of annealing and processing conditions on nano-structured thin films of tungsten trioxide
Transition metal oxides represent a novel class of compounds which have attracted a considerable interest in the recent literature. Among these materials, tungsten trioxide has shown great potential due to photo-oxidation of water with visible light, high photocurrent with nano-crystals and good sensing properties towards several gases. The purpose of this study is to investigate the influence of conditions of heat treatment on properties of WO3 thin films prepared by hermal evaporation under vacuum. Physico-chemical properties of WO3 thin layers for different heat processing conditions were determined by X-ray diffraction XRD, microprobe electronics and scanning electron microscopy (SEM).Optical measurement yieldedt ransmission and reflection measurements. The study of the physicochemical properties of thin layers of thermally post-treated tungsten trioxide showed that layers processed under vacuum have an unidentifiable structure than those annealed in air and crystallized under different crystallographic structures depending on processing temperature. Layers annealed in oxygen hadmonoclinic crystalline structures.It has been recorded that crystallinity and transmission of these films were drastically improved
The Time Structure of Hadronic Showers in highly granular Calorimeters with Tungsten and Steel Absorbers
The intrinsic time structure of hadronic showers influences the timing
capability and the required integration time of hadronic calorimeters in
particle physics experiments, and depends on the active medium and on the
absorber of the calorimeter. With the CALICE T3B experiment, a setup of 15
small plastic scintillator tiles read out with Silicon Photomultipliers, the
time structure of showers is measured on a statistical basis with high spatial
and temporal resolution in sampling calorimeters with tungsten and steel
absorbers. The results are compared to GEANT4 (version 9.4 patch 03)
simulations with different hadronic physics models. These comparisons
demonstrate the importance of using high precision treatment of low-energy
neutrons for tungsten absorbers, while an overall good agreement between data
and simulations for all considered models is observed for steel.Comment: 24 pages including author list, 9 figures, published in JINS
- …