We study property testing in the context of distributed computing, under the
classical CONGEST model. It is known that testing whether a graph is
triangle-free can be done in a constant number of rounds, where the constant
depends on how far the input graph is from being triangle-free. We show that,
for every connected 4-node graph H, testing whether a graph is H-free can be
done in a constant number of rounds too. The constant also depends on how far
the input graph is from being H-free, and the dependence is identical to the
one in the case of testing triangles. Hence, in particular, testing whether a
graph is K_4-free, and testing whether a graph is C_4-free can be done in a
constant number of rounds (where K_k denotes the k-node clique, and C_k denotes
the k-node cycle). On the other hand, we show that testing K_k-freeness and
C_k-freeness for k>4 appear to be much harder. Specifically, we investigate two
natural types of generic algorithms for testing H-freeness, called DFS tester
and BFS tester. The latter captures the previously known algorithm to test the
presence of triangles, while the former captures our generic algorithm to test
the presence of a 4-node graph pattern H. We prove that both DFS and BFS
testers fail to test K_k-freeness and C_k-freeness in a constant number of
rounds for k>4