35 research outputs found

    Spectroastrometry of rotating gas disks for the detection of supermassive black holes in galactic nuclei. II. Application to the galaxy Centaurus A (NGC 5128)

    Full text link
    We measure the black hole mass in the nearby active galaxy Centaurus A (NGC 5128) using a new method based on spectroastrometry of a rotating gas disk. The spectroastrometric approach consists in measuring the photocenter position of emission lines for different velocity channels. In a previous paper we focused on the basic methodology and the advantages of the spectroastrometric approach with a detailed set of simulations demonstrating the possibilities for black hole mass measurements going below the conventional spatial resolution. In this paper we apply the spectroastrometric method to multiple longslit and integral field near infrared spectroscopic observations of Centaurus A. We find that the application of the spectroastrometric method provides results perfectly consistent with the more complex classical method based on rotation curves: the measured BH mass is nearly independent of the observational setup and spatial resolution and the spectroastrometric method allows the gas dynamics to be probed down to spatial scales of ~0.02", i.e. 1/10 of the spatial resolution and ~1/50 of BH sphere of influence radius. The best estimate for the BH mass based on kinematics of the ionized gas is then log(MBH (sin i)^2/M\odot)=7.5 \pm 0.1 which corresponds to MBH = 9.6(+2.5-1.8) \times 10^7 M\odot for an assumed disk inclination of i = 35deg. The complementarity of this method with the classic rotation curve method will allow us to put constraints on the disk inclination which cannot be otherwise derived from spectroastrometry. With the application to Centaurus A, we have shown that spectroastrometry opens up the possibility of probing spatial scales smaller than the spatial resolution, extending the measured MBH range to new domains which are currently not accessible: smaller BHs in the local universe and similar BHs in more distant galaxies

    VLT diffraction-limited imaging at 11 and 18 micron of the nearest active galactic nuclei

    Full text link
    Mid-infrared imaging at resolutions of 300 mas of the central kpc region of 13 nearby, well-known active galaxies is presented. The bulk of the mid-IR emission is concentrated on an unresolved central source within a size of less than 5 to 130 pc, depending on the object distance. Further resolved emission is detected in 70% of the sample in the form of circumnuclear star-forming rings or diffuse nuclear extended emission. In the three cases with circumnuclear star formation, the stellar contribution is at least as important as that of the AGN. In those with extended nuclear emission -- a third of the sample -- this emission represents a few per cent of the total measured; however, this contribution may be underestimated because of the chopped nature of these observations. This extended emission is generally collimated in a preferential direction often coinciding with that of the extended ionized gas or the jet. In all cases, the nuclear fluxes measured at 11.8 and 18.7 micron represent a minor contribution of the flux levels measured by large aperture IRAS data at the nearest energy bands of 12 and 25 micron. This contribution ranges from 30% to less than 10%. In only three cases do the AGN fluxes agree with IRAS to within a factor of 2. In the AGNs with strong circumnuclear star formation, this component can well account for most of the IRAS flux measured in these objects. But in all other cases, either a low surface brightness component extending over galactic scales or strong extra-nuclear IR sources -- e.g. HII regions in spiral arms -- have to be the main source of the IRAS emission. In either case, the contribution of these components dwarfs that of the AGN at mid-IR wavelengths.Comment: 17 pages, 10 figures. Accepted for publication in MNRA

    The shape of the dark matter halo in the early-type galaxy NGC 2974

    Get PDF
    We present HI observations of the elliptical galaxy NGC 2974, obtained with the Very Large Array. These observations reveal that the previously detected HI disc in this galaxy (Kim et al. 1988) is in fact a ring. By studying the harmonic expansion of the velocity field along the ring, we constrain the elongation of the halo and find that the underlying gravitational potential is consistent with an axisymmetric shape. We construct mass models of NGC 2974 by combining the HI rotation curve with the central kinematics of the ionised gas, obtained with the integral-field spectrograph SAURON. We introduce a new way of correcting the observed velocities of the ionised gas for asymmetric drift, and hereby disentangle the random motions of the gas caused by gravitational interaction from those caused by turbulence. To reproduce the observed flat rotation curve of the HI gas, we need to include a dark halo in our mass models. A pseudo-isothermal sphere provides the best model to fit our data, but we also tested an NFW halo and Modified Newtonian Dynamics (MOND), which fit the data marginally worse. The mass-to-light ratio M/L_I increases in NGC 2974 from 4.3 (M/L_I)sun at one effective radius to 8.5 (M/L_I)sun at 5 Re. This increase of M/L already suggests the presence of dark matter: we find that within 5 Re at least 55 per cent of the total mass is dark.Comment: 17 pages, 20 figures, accepted by MNRA

    High-energy Particle Acceleration and Production of Ultra-high-energy Cosmic Rays in the Giant Lobes of Centaurus A

    Get PDF
    ‘The definitive version is available at www3.interscience.wiley.com '. Copyright Royal Astronomical Society. DOI: 10.1111/j.1365-2966.2008.14265.xThe nearby radio galaxy Centaurus A is poorly studied at high frequencies with conventional radio telescopes because of its very large angular size, but is one of a very few extragalactic objects to be detected and resolved by the Wilkinson Microwave Anisotropy Probe (WMAP).We have used the five-year WMAP data for Cen A to constrain the high-frequency radio spectra of the 10-degree giant lobes and to search for spectral changes as a function of position along the lobes. We show that the high-frequency radio spectra of the northern and southern giant lobes are significantly different: the spectrum of the southern lobe steepens monotonically (and is steeper further from the active nucleus) whereas the spectrum of the northern lobe remains consistent with a power law. The inferred differences in the northern and southern giant lobes may be the result of real differences in their high-energy particle acceleration histories, perhaps due to the influence of the northern middle lobe, an intermediate-scale feature which has no detectable southern counterpart. In light of these results, we discuss the prospects for Gamma-ray Large Area Space Telescope (GLAST) detections of inverse-Compton emission from the giant lobes and the lobes’ possible role in the production of the ultra-high energy cosmic rays (UHECR) detected by the Pierre Auger Observatory. We show that the possibility of a GLAST detection depends sensitively on the physical conditions in the giant lobes, with the northern lobe more likely to be detected, and that any emission observed by GLAST is likely to be restricted to the soft end of the GLAST energy band. On the other hand we argue that the estimated conditions in the giant lobes imply that UHECRs can be accelerated there, with a potentially detectable -ray signature at GeV-TeV energies.Peer reviewe

    General-relativistic model of hot accretion flows with global Compton cooling

    Full text link
    We present a model of optically thin, two-temperature, accretion flows using an exact Monte Carlo treatment of global Comptonization, with seed photons from synchrotron and bremsstrahlung emission, as well as with a fully general relativistic description of both the radiative and hydrodynamic processes. We consider accretion rates for which the luminosities of the flows are between ~0.001 and 0.01 of the Eddington luminosity. The black hole spin parameter strongly affects the flow structure within the innermost 10 gravitational radii. The resulting large difference between the Coulomb heating in models with a non-rotating and a rapidly rotating black hole is, however, outweighed by a strong contribution of compression work, much less dependent on spin. The consequent reduction of effects related to the value of the black spin is more significant at smaller accretion rates. For a non-rotating black hole, the compressive heating of electrons dominates over their Coulomb heating, and results in an approximately constant radiative efficiency of approximately 0.4 per cent in the considered range of luminosities. For a rapidly rotating black hole, the Coulomb heating dominates, the radiative efficiency is ~1 per cent and it slightly increases (but less significantly than estimated in some previous works) with increasing accretion rate. We find an agreement between our model, in which the synchrotron emission is the main source of seed photons, and observations of black-hole binaries in their hard states and AGNs at low luminosities. In particular, our model predicts a hardening of the X-ray spectrum with increasing luminosity, as indeed observed below ~0.01 of the Eddington luminosity in both black-hole binaries and AGNs. Also, our model approximately reproduces the luminosity and the slope of the X-ray emission in Cen A.Comment: 13 pages, MNRAS, accepte

    NGC6240: Merger-Induced Star Formation & Gas Dynamics

    Full text link
    We present spatially resolved integral field spectroscopic K-band data at a resolution of 0.13" (60pc) and interferometric CO(2-1) line observations of the prototypical merging system NGC6240. Despite the clear rotational signature, the stellar kinematics in the two nuclei are dominated by dispersion. We use Jeans modelling to derive the masses and the mass-to-light ratios of the nuclei. Combining the luminosities with the spatially resolved Br-gamma equivalent width shows that only 1/3 of the K-band continuum from the nuclei is associated with the most recent star forming episode; and that less than 30% of the system's bolometric luminosity and only 9% of its stellar mass is due to this starburst. The star formation properties, calculated from typical merger star formation histories, demonstrate the impact of different assumptions about the star formation history. The properties of the nuclei, and the existence of a prominent old stellar population, indicate that the nuclei are remnants of the progenitor galaxies' bulges.Comment: 18 pages, 14 figures. Accepted for publication in A&

    Two-dimensional H_alpha kinematics of bulgeless disk galaxies

    Full text link
    We present two-dimensional H_alpha velocity fields for 20 late-type, disk-dominated spiral galaxies, the largest sample to date with high-resolution H_alpha velocity fields for bulgeless disks. From these data we derive rotation curves and the location of the kinematic centers. The galaxy sample was selected to contain nucleated and non-nucleated galaxies, which allows us to investigate what impact the gas kinematics in the host disk have on the presence (or absence) of a nuclear star cluster. In general, we find that the velocity fields span a broad range of morphologies. While some galaxies show regular rotation, most have some degree of irregular gas motions. There appears to be no systematic difference in the kinematics of nucleated and non-nucleated disks. Due to the large fields of view of the integral field units we use, we are able to observe the flattening of the rotation curve in almost all of our sample galaxies. This makes modeling of the velocity fields relatively straight-forward. Due to the complexities of the velocity fields, we obtain reliable determinations of the kinematic center for only 6 of our 20 sample galaxies. For all of these the locations of the nuclear star cluster/photometric center and the kinematic center agree within the uncertainties. If we disregard all kinematically irregular galaxies, our study concludes that nuclear star clusters truly occupy the nuclei, or dynamical centers, of their hosts. Our results are thus consistent with in-situ formation of nuclear star clusters. Yet, many well-motivated formation scenarios for nuclear clusters invoke off-center cluster formation and subsequent sinking of clusters due to dynamical friction. In that case, our results imply that dynamical friction in the centers of bulgeless galaxies must be very effective in driving massive clusters to the kinematic center. (abridged)Comment: 16 pages, 7 figures(some in reduced quality); MNRAS in pres

    Amuse-field. II. Nucleation of early-type galaxies in the field versus cluster environment

    Get PDF
    The optical light profiles of nearby early-type galaxies are known to exhibit a smooth transition from nuclear light deficits to nuclear light excesses with decreasing galaxy mass, with as much as 80% of the galaxies with stellar masses below 1010 M ? hosting a massive nuclear star cluster (NSC). At the same time, while all massive galaxies are thought to harbor nuclear supermassive black holes (SMBHs), observational evidence for SMBHs is slim at the low end of the mass function. Here, we explore the environmental dependence of the nucleation fraction by comparing two homogeneous samples of nearby field versus cluster early-type galaxies with uniform Hubble Space Telescope (HST) coverage. Existing Chandra X-ray Telescope data for both samples yield complementary information on low-level accretion onto nuclear SMBHs. Specifically, we report on dual-band (F475W and F850LP) Advanced Camera for Surveys (ACS) imaging data for 28 out of the 103 field early-type galaxies that compose the AMUSE-Field Chandra survey, and compare our results against the companion HST and Chandra surveys for a sample of 100 Virgo Cluster early-types (ACS Virgo Cluster and AMUSE-Virgo surveys, respectively). We model the two-dimensional light profiles of the field targets to identify and characterize NSCs, and find a field nucleation fraction of 26% +17%-11% (at the 1s level), consistent with the measured Virgo nucleation fraction across a comparable mass distribution (30%+17%-12%). Coupled with the Chandra result that SMBH activity is higher for the field, our findings indicate that, since the last epoch of star formation, the funneling of gas to the nuclear regions has been inhibited more effectively for Virgo galaxies, arguably via ram pressure stripping

    A synchrotron self-Compton scenario for the very high energy gamma-ray emission of the radiogalaxy M87

    Full text link
    M87 is the first extragalactic source detected in the TeV range that is not a blazar. With the increasing performances of ground-based Cherenkov telescopes, we can now probe the variability in the gamma-ray flux at small timescales, thus putting strong constraints on the size of the emitting zone. A modification of standard emission models of TeV blazars appears necessary to account for the gamma-ray observations despite this misalignment. We explain TeV gamma-ray spectra and fast variability of M87 by invoking an emission zone close to the central supermassive black hole, which is filled with several plasma blobs moving in the large opening angle of the jet formation zone. We develop a new multi-blob synchrotron self-Compton (SSC) model with emitting blobs beyond the Alfven surface in the jet, at a distance of about 100 r_g from the central engine. This model is explicitly adapted to deal with large viewing angles and moderate values of the Lorentz factor inferred from (general relativistic) magnetohydrodynamic models of jet formation. This scenario can account for the recent gamma-ray observations of M87 made by the High Energy Stereoscopic System (H.E.S.S.) telescope array. We find individual blob radii of about 10^{14} cm, which is compatible with the variability on timescales of days recently reported by the H.E.S.S. collaboration and is of the order of the black hole gravitational radius. Predictions of the very high energy emission for three other sources with extended optical or X-ray jet which could be misaligned blazars still with moderate beaming are presented for one Seyfert 2 radiogalaxy, namely Cen A, one peculiar BL Lac, PKS 0521-36, and one quasar, 3C 273.Comment: 10 pages, 8 figures; accepted in A&

    Molecular gas in the centre of nearby galaxies from VLT/SINFONI integral field spectroscopy - II. Kinematics(star)

    Get PDF
    We present an analysis of the H2 emission-line gas kinematics in the inner â‰Č4 arcsec radius of six nearby spiral galaxies, based on adaptive optics-assisted integral-field observations obtained in the K band with SINFONI/VLT. Four of the six galaxies in our sample display ordered H2 velocity fields, consistent with gas moving in the plane of the galaxy and rotating in the same direction as the stars. However, the gas kinematics is typically far from simple circular motion. We can classify the observed velocity fields into four different types of flows, ordered by increasing complexity: (1) circular motion in a disc (NGC 3351); (2) oval motion in the galaxy plane (NGC 3627 and NGC 4536); (3) streaming motion superimposed on circular rotation (NGC 4501); and (4) disordered streaming motions (NGC 4569 and NGC 4579). The H2 velocity dispersion in the galaxies is usually higher than 50 km s−1 in the inner 1–2 arcsec radii. The four galaxies with ordered kinematics have v/σ < 1 at radii less than 40–80 pc. The radius at which v/σ = 1 is independent of the type of nuclear activity. While the low values of v/σ could be taken as an indication of a thick disc in the innermost regions of the galaxies, other lines of evidence (e.g. H2 morphologies and velocity fields) argue for a thin disc interpretation in the case of NGC 3351 and NGC 4536. We discuss the implications of the high values of velocity dispersion for the dynamics of the gaseous disc and suggest caution when interpreting the velocity dispersion of ionized and warm tracers as being entirely dynamical. Understanding the nature and role of the velocity dispersion in the gas dynamics, together with the full 2D information of the gas, is essential for obtaining accurate black hole masses from gas kinematics
    corecore