578 research outputs found

    NGC 4569: recent evidence for a past ram pressure stripping event

    Full text link
    Deep 21-cm HI line observations of the Virgo cluster spiral galaxy NGC 4569 have been obtained with the VLA in its D configuration and with the Effelsberg 100-m telescope. A low surface density arm was discovered in the west of the galaxy, whose velocity field is distinct from that of the overall disk rotation. The observed gas distribution, velocity field, and velocity dispersion are compared to snapshots of dynamical simulations that include the effects of ram pressure. Two different scenarios were explored: (i) ongoing stripping and (ii) a major stripping event that took place about 300 Myr ago. It is concluded that only the post-stripping scenario can reproduce the main observed characteristics of NGC 4569. It is not possible to determine if the gas disk of NGC 4569 had already been truncated before it underwent the ram pressure event that lead to its observed HI deficiency.Comment: 13 pages, 15 figures. Accepted for publication in A&

    Magnetic collimation of meridional-self-similar general relativistic MHD flows

    Full text link
    We present a model for the spine of relativistic MHD outflows in the Kerr geometry. Meridional self-similarity is invoked to derive semi-analytical solutions close to the polar axis. The study of the energy conservation along a particular field line gives a simple criterion for the collimation of jets. Such parameter have already been derived in the classical case by Sauty et al. 1999 and also extended to the Schwarzschild metric by Meliani et al. 2006. We generalize the same study to the Kerr metric. We show that the rotation of the black hole increases the magnetic self-confinement.Comment: 16 pages, 6 figures, accepted for publication in Physical Review

    NGC 6340: an old S0 galaxy with a young polar disc. Clues from morphology, internal kinematics and stellar populations

    Full text link
    Lenticular galaxies are believed to form by a combination of environmental effects and secular evolution. We study the nearby disc-dominated S0 galaxy NGC 6340 photometrically and spectroscopically to understand the mechanisms of S0 formation and evolution in groups. We use SDSS images to build colour maps and light profile of NGC 6340 which we decompose using a three-component model including Sersic and two exponential profiles. We also use Spitzer images to study the morphology of regions containing warm ISM and dust. Then, we re-process and re-analyse deep long-slit spectroscopic data for NGC 6340 and recover its stellar and gas kinematics, distribution of age and metallicity with the NBursts full spectral fitting. We obtain the profiles of internal kinematics, age, and metallicity out to >2 half-light radii. The three structural components of NGC 6340 are found to have distinct kinematical and stellar population properties. We see a kinematical misalignment between inner and outer regions of the galaxy. We confirm the old metal-rich centre and a wrapped inner gaseous polar disc (r~1 kpc) having weak ongoing star formation, counter-rotating in projection with respect to the stars. The central compact pseudo-bulge of NGC 6340 looks very similar to compact elliptical galaxies. In accordance with the results of numerical simulations, we conclude that properties of NGC 6340 can be explained as the result of a major merger of early-type and spiral galaxies which occurred about 12 Gyr ago. The intermediate exponential structure might be a triaxial pseudo-bulge formed by a past bar structure. The inner compact bulge could be the result of a nuclear starburst triggered by the merger. The inner polar disc appeared recently, 1/3-1/2 Gyr ago as a result of another minor merger or cold gas accretion.Comment: 12 pages, 8 figures, accepted to A&

    Counterrotation in magnetocentrifugally driven jets and other winds

    Full text link
    Rotation measurement in jets from T Tauri stars is a rather difficult task. Some jets seem to be rotating in a direction opposite to that of the underlying disk, although it is not yet clear if this affects the totality or part of the outflows. On the other hand, Ulysses data also suggest that the solar wind may rotate in two opposite ways between the northern and southern hemispheres. We show that this result is not as surprising as it may seem and that it emerges naturally from the ideal MHD equations. Specifically, counterrotating jets neither contradict the magnetocentrifugal driving of the flow nor prevent extraction of angular momentum from the disk. The demonstration of this result is shown by combining the ideal MHD equations for steady axisymmetric flows. Provided that the jet is decelerated below some given threshold beyond the Alfven surface, the flow will change its direction of rotation locally or globally. Counterrotation is also possible for only some layers of the outflow at specific altitudes along the jet axis. We conclude that the counterrotation of winds or jets with respect to the source, star or disk, is not in contradiction with the magnetocentrifugal driving paradigm. This phenomenon may affect part of the outflow, either in one hemisphere, or only in some of the outflow layers. From a time-dependent simulation, we illustrate this effect and show that it may not be permanent.Comment: To appear in ApJ

    Counter-rotation in relativistic magnetohydrodynamic jets

    Full text link
    Young stellar object observations suggest that some jets rotate in the opposite direction with respect to their disk. In a recent study, Sauty et al. (2012) have shown that this does not contradict the magnetocentrifugal mechanism that is believed to launch such outflows. Signatures of motions transverse to the jet axis and in opposite directions have recently been measured in M87 (Meyer et al. 2013). One possible interpretation of this motion is the one of counter rotating knots. Here, we extend our previous analytical derivation of counter-rotation to relativistic jets, demonstrating that counter-rotation can indeed take place under rather general conditions. We show that both the magnetic field and a non-negligible enthalpy are necessary at the origin of counter-rotating outflows, and that the effect is associated with a transfer of energy flux from the matter to the electromagnetic field. This can be realized in three cases : if a decreasing enthalpy causes an increase of the Poynting flux, if the flow decelerates, or, if strong gradients of the magnetic field are present. An illustration of the involved mechanism is given by an example of relativistic MHD jet simulation.Comment: Accepted for publication in ApJ

    Shocks in relativistic transverse stratified jets, a new paradigm for radio-loud AGN

    Full text link
    The transverse stratification of active galactic nuclei (AGN) jets is suggested by observations and theoretical arguments, as a consequence of intrinsic properties of the central engine (accretion disc + black hole) and external medium. On the other hand, the one-component jet approaches are heavily challenged by the various observed properties of plasmoids in radio jets (knots), often associated with internal shocks. Given that such a transverse stratification plays an important role on the jets acceleration, stability, and interaction with the external medium, it should also induce internal shocks with various strengths and configurations, able to describe the observed knots behaviours. By establishing a relation between the transverse stratification of the jets, the internal shock properties, and the multiple observed AGN jet morphologies and behaviours, our aim is to provide a consistent global scheme of the various AGN jet structures. Working on a large sample of AGN radio jets monitored in very long baseline interferometry (VLBI) by the MOJAVE collaboration, we determined the consistency of a systematic association of the multiple knots with successive re-collimation shocks. We then investigated the re-collimation shock formation and the influence of different transverse stratified structures by parametrically exploring the two relativistic outflow components with the specific relativistic hydrodynamic (SRHD) code AMRVAC. We were able to link the different spectral classes of AGN with specific stratified jet characteristics, in good accordance with their VLBI radio properties and their accretion regimes.Comment: 16 pages, 12 figures, accepted for publication in A&
    corecore