424 research outputs found

    Modelling the dust content of spiral galaxies: More dust mass vs. enhanced dust grain emissivity

    Full text link
    We present detailed modelling of the spectral energy distribution (SED) of the spiral galaxies NGC 891, NGC 4013, and NGC 5907 in the far-infrared (FIR) and sub-millimeter (submm) wavelengths. The model takes into account the emission of the diffuse dust component, which is heated by the UV and optical radiation fields produced by the stars, as well as the emission produced locally in star forming HII complexes. The radiative transfer simulations of Xilouris et al. (1999) in the optical bands are used to constrain the stellar and dust geometrical parameters, as well as the total amount of dust. We find that the submm emission predicted by our model can not account for the observed fluxes at these wavelengths. We examine two cases, one having more dust embedded in a second thin disk and another allowing for an enhanced submillimeter emissivity of the dust grains. We argue that both cases can equally well reproduce the observed SED. The case of having more dust embedded in a second disk though, is not supported by the near-infrared observations and thus more realistic distributions of the dust (i.e., in spiral arms and clumps) have to be examined in order to better fit the surface brightness of each galaxy.Comment: To appear in the proceedings of: "The Spectral Energy Distribution of Gas-Rich Galaxies: Confronting Models with Data", Heidelberg, 4-8 Oct. 2004, eds. C.C. Popescu and R.J. Tuffs, AIP Conf. Ser., in pres

    Dynamical evolution of local gas-rich galaxy mergers from NIR spectroscopy

    Get PDF
    This study aimed to trace how the stellar kinematics evolve when two gas-rich galaxies merge. To study the evolution of such mergers, Very-Large-Telescope observations were performed for the best-suited galaxy population in the local Universe, the Ultraluminous Infrared Galaxies (ULIRGs). The prodigious infrared emission in ULIRGs originates from the intense star formation that occurs when large amounts gas are driven to the center of the merging system. We acquired near-infrared H- and K-band spectroscopic data of 54 ULIRGs at various merger phases; approximately half of the sources in our sample have two distinct nuclei. For each source, we derived the stellar kinematics from the high-resolution spectra by studying the profile of the stellar CO absorption lines. The shape of the profile along various slit positions enables us to measure the rotational velocity, V_rot, and velocity dispersion, sigma, and to compute the stellar and black hole (BH) masses. We find that ULIRGs are mostly triggered by mergers of roughly equal-mass galaxies. Their mean velocity dispersion equals 150+- 33 km/s. A possible trend of dynamical heating of the galaxies as the merger evolves is observed at marginal statistical levels. The kinematic, structural, and photometric properties of ULIRGs indicate that they are dispersion-dominated systems and that they mainly result in the formation of 10^10-10^11 solar-mass elliptical galaxies (Es). Their locus on the fundamental plane of Es indicates that their end products are typically inconsistent with giant Es. The BH masses in ULIRGs are of the order 10^7- 10^8 solar. To investigate whether ULIRGs go through quasar (QSO) phases during their evolution, we have acquired similar data for 12 local Palomar-Green (PG) QSOs. The mean bulge dispersion of the PG QSOs in our sample equals 186 +-24 km/s. The measurement of the stellar dispersion in QSOs enables us to place them on significant observational diagrams, such as the local BH mass and host-galaxy bulge relation and the fundamental plane of Es. On the latter, PG QSOs are located between the regions occupied by moderate-mass and giant Es. Their bulge and BH masses are on the order of 10^11 and 5*10^7-10^8 solar masses respectively. PG QSOs seem to be triggered by gas-rich mergers, and therefore likely formed in an analogous manner to ULIRGs. However, other local QSOs with supermassive black holes of 5*10^8-10^9 solar masses that reside in massive spheroids have a different formation mechanism

    A radio jet drives a molecular and atomic gas outflow in multiple regions within one square kiloparsec of the nucleus of the nearby galaxy IC5063

    Full text link
    We analyzed near-infrared data of the nearby galaxy IC5063 taken with the Very Large Telescope SINFONI instrument. IC5063 is an elliptical galaxy that has a radio jet nearly aligned with the major axis of a gas disk in its center. The data reveal multiple signatures of molecular and atomic gas that has been kinematically distorted by the passage of the jet plasma or cocoon within an area of ~1 kpc^2. Concrete evidence that the interaction of the jet with the gas causes the gas to accelerate comes from the detection of outflows in four different regions along the jet trail: near the two radio lobes, between the radio emission tip and the optical narrow-line-region cone, and at a region with diffuse 17.8 GHz emission midway between the nucleus and the north radio lobe. The outflow in the latter region is biconical, centered 240 pc away from the nucleus, and oriented perpendicularly to the jet trail. The diffuse emission that is observed as a result of the gas entrainment or scattering unfolds around the trail and away from the nucleus with increasing velocity. It overall extends for >700 pc parallel and perpendicular to the trail. Near the outflow starting points, the gas has a velocity excess of 600 km/s to 1200 km/s with respect to ordered motions, as seen in [FeII], Pa alpha, or H2 lines. High H2 (1-0) S(3)/S(1) flux ratios indicate non-thermal excitation of gas in the diffuse outflow.Comment: Accepted for publication in Ap

    Is the Galactic submillimeter dust emissivity underestimated?

    Full text link
    We present detailed modeling of the spectral energy distribution (SED) of the spiral galaxies NGC 891, NGC 4013, and NGC 5907 in the far-infrared and submm wavelengths. The model takes into account the emission produced by the diffuse dust and the star forming HII complexes. The dust mass is constrained by radiative transfer simulations in the optical (Xilouris et al. 1999). We find that the submm emission predicted by our model cannot account for the observed fluxes. Two scenarios may account for the "missing" submm flux. In the first scenario (Popescu et al. 2000), additional dust (to that derived from the optical, and associated with young stars) is embedded in the galaxy in the form of a thin disk and gives rise to additional submm emission. The other scenario investigates whether the average submm emissivity of the dust grains is higher than the values widely used in Galactic environments. In this case, the dust mass is equal to that derived from the optical observations, and the submm emissivity is treated as a free parameter calculated by fitting our model to the observed SED. We find the submm emissivity value to be ~3 times that often used for our Galaxy. While both scenarios reproduce the observed 850 micron surface brightness, the extra embedded dust model is not supported by the near infrared observations. We, thus, find that the enhanced dust submm emissivity scenario is the most plausible. [abridged]Comment: 12 pages, 10 figures, accepted for publication in Astronomy and Astrophysic

    X-QUEST: A Comprehensive X-ray Study of Local ULIRGs and QSOs

    Full text link
    We present results from the X-ray portion of a multi-wavelength study of local ULIRGs and QSOs called QUEST (Quasar-ULIRG Evolution STudy). The data consist of new and archival X-ray data on 40 ULIRGs and 26 PG QSOs taken with Chandra and XMM-Newton. A combination of traditional and hardness ratio spectral fitting methods is used to characterize the X-ray properties of these objects. The absorption-corrected 2-10 keV to bolometric luminosity ratios of the ULIRGs and PG QSOs suggest that the likelihood for dominant nuclear activity increases along the merger sequence from "cool" ULIRGs, "warm" ULIRGs, infrared-bright QSOs, and infrared-faint QSOs. The starburst dominates the total power in ULIRGs prior to the merger, and this is followed by rapid black hole growth during and after coalescence. These results are in general agreement with those obtained in the mid-infrared with Spitzer and recent numerical simulations.Comment: 63 pages preprint style including 16 figures and 11 tables; accepted by Ap

    Ultra-luminous Infrared Galaxies in Sloan Digital Sky Survey Data Release 6

    Full text link
    Ultra-luminous infrared galaxies (ULIRGs) are interesting objects with dramatic properties. Many efforts have been made to understand the physics of their luminous infrared emission and evolutionary stages. However, a large ULIRG sample is still needed to study the properties of their central black holes (BHs), the BH-host galaxy relation, and their evolution. We identified 308 ULIRGs from the Sloan Digital Sky Survey Data Release 6, and classified them into the NL ULIRGs (with only narrow emission lines) and the Type I ULIRGs (with broad emission lines). About 56% of ULIRGs in our total sample show interaction features, and this percentage is 79% for redshift z < 0.2. Optical identifications of these ULIRGs show that the AGN percentage is at least 49%, and the percentage increases with the infrared luminosity. We found 62 Type I ULIRGs, and estimated their BH masses and velocity dispersions from their optical spectra. Together with known Type I ULIRGs in the literature, a sample of 90 Type I ULIRGs enables us to make a statistical study. We found that the BH masses of Type I ULIRGs are typically smaller than those of PG QSOs, and most Type I ULIRGs follow the M_{BH}-sigma relation. However, some ULIRGs with larger Eddington ratio deviate from this relation, even the line width of the [OIII] narrow line (NL) core or the [SII] line was used as the surrogate of velocity dispersion. This implies that at least some ULIRGs are probably still in the early evolution stage toward QSOs. The anti-correlation between the mass deviation from the M_{BH}-sigma relation and the Eddington ratio supports that the evolution of Type I ULIRGs is probably followed by the building up of the M_{BH}-sigma relation and the evolution to the QSO phase.Comment: 46 pages, 15 figures, 2 tables; published by Ap

    Cold and warm molecular gas in the outflow of 4C12.50

    Full text link
    We present deep observations of the 12CO(1-0) and (3-2) lines in the ultra-luminous infrared and radio galaxy 4C12.50, carried out with the 30m telescope of the Institut de Radioastronomie Millimetrique. Our observations reveal the cold molecular gas component of a warm molecular gas outflow that was previously known from Spitzer Space Telescope data. The 12CO(3-2) profile indicates the presence of absorption at -950 km/s from systemic velocity with a central optical depth of 0.22. Its profile is similar to that of the HI absorption that was seen in radio data of this source. A potential detection of the (0-1) absorption enabled us to place an upper limit of 0.03 on its central optical depth, and to constrain the excitation temperature of the outflowing CO gas to >=65K assuming that the gas is thermalized. If the molecular clouds fully obscure the background millimeter continuum that is emitted by the radio core, the H2 column density is >=1.8*10^22 /cm^2. The outflow then carries an estimated cold H2 mass of at least 4.2*10^3 M_sun along the nuclear line of sight. This mass will be even higher when integrated over several lines of sight, but if it were to exceed 3*10^9 M_sun, the outflow would most likely be seen in emission. Since the ambient cold gas reservoir of 4C12.50 is 1.0*10^10 M_sun, the outflowing-to-ambient mass ratio of the warm gas (37%) could be elevated with respect to that of the cold gas.Comment: A&A letters, in pres

    Turbulent and fast motions of H2 gas in active galactic nuclei

    Full text link
    Querying the Spitzer archive for optically-selected active galactic nuclei (AGN) observed in high-resolution mode spectroscopy, we identified radio and/or interacting galaxies with highly turbulent motions of the H2 gas at a temperature of a few hundred Kelvin. Unlike all other AGN that have unresolved H2 line profiles at a spectral resolution of ~600, 3C236, 3C293, IRAS09039+0503, MCG-2-58-22, and Mrk463E have intrinsic velocity dispersions exceeding 200 km/s for at least two of the rotational S0, S1, S2, and S3 lines. In a sixth source, 4C12.50, a blue wing was detected in the S1 and S2 line profiles, indicating the presence of a warm molecular gas component moving at -640 km/s with respect to the bulk of the gas at systemic velocity. Its mass is 5.2*10^7 M_sun, accounting for more than one fourth of the H2 gas at 374K, but less than 1% of the cold H2 gas computed from CO observations. Because no diffuse gas component of 4C12.50 has been observed to date to be moving at more than 250 km/s from systemic velocity, the H2 line wings are unlikely to be tracing gas in shock regions along the tidal tails of this merging system. They can instead be tracing gas driven by a jet or entrained by a nuclear outflow, which is known to emerge from the west nucleus of 4C12.50. It is improbable that such an outflow, with an estimated mass loss rate of 130 M_sun/yr, entirely quenches the star formation around this nucleus.Comment: A&A letters, revised to match the final print versio

    HST NICMOS imaging of z~2, 24 micron-selected Ultraluminous Infrared Galaxies

    Full text link
    We present Hubble Space Telescope NICMOS H-band imaging of 33 Ultraluminous Infrared Galaxies (ULIRGs) at z~2 that were selected from the 24 micron catalog of the Spitzer Extragalactic First Look Survey. The images reveal that at least 17 of the 33 objects are associated with interactions. Up to one fifth of the sources in our sample could be minor mergers whereas only 2 systems are merging binaries with luminosity ratio <=3:1, which is characteristic of local ULIRGs. The rest-frame optical luminosities of the sources are of the order 10^10-10^11 L_sun and their effective radii range from 1.4 to 4.9 kpc. The most compact sources are either those with a strong active nucleus continuum or those with a heavy obscuration in the mid-infrared regime, as determined from Spitzer Infra-Red Spectrograph data. The luminosity of the 7.7 micron feature produced by polycyclic aromatic hydrocarbon molecules varies significantly among compact systems whereas it is typically large for extended systems. A bulge-to-disk decomposition performed for the 6 brightest (m_H<20) sources in our sample indicates that they are best fit by disk-like profiles with small or negligible bulges, unlike the bulge-dominated remnants of local ULIRGs. Our results provide evidence that the interactions associated with ultraluminous infrared activity at z~2 can differ from those at z~0.Comment: ApJ, in press. Document revised to match the journal versio
    corecore