642 research outputs found

    The History of Cosmic Baryons: X-ray Emission vs. Star Formation Rate

    Get PDF
    We relate the star formation from cold baryons in virialized structures to the X-ray properties of the associated diffuse, hot baryonic component. Our computations use the standard ``semi-analytic'' models to describe i) the evolution of dark matter halos through merging after the hierarchical clustering, ii) the star formation governed by radiative cooling and by supernova feedback, iii) the hydro- and thermodynamics of the hot gas, rendered with our Punctuated Equilibria model. So we relate the X-ray observables concerning the intra-cluster medium to the thermal energy of the gas pre-heated and expelled by supernovae following star formation, and then accreted during the subsequent merging events. We show that at fluxes fainter than FX≈10−15F_X\approx 10^{-15} erg/cm2^2 s (well within the reach of next generation X-ray observatories) the X-ray counts of extended extragalactic sources (as well as the faint end of the luminosity function, the contribution to the soft X-ray background, and the LX−TL_X-T correlation at the group scales) increase considerably when the star formation rate is enhanced for z>1 as indicated by growing optical/infrared evidence. Specifically, the counts in the range 0.5-2 keV are increased by factors ∼4\sim 4 when the the feedback is decreased and star formation is enhanced as to yield a flat shape of the star formation rate for 2<z<4.Comment: 11 pages, 8 figures, accepted for publication in MNRA

    The SZ Effect as a Probe of Non-Gravitational Entropy in Groups and Clusters of Galaxies

    Get PDF
    We investigate how strongly and at what scales the Sunyaev- Zel'dovich effect reflects the shifting balance between the two processes that compete for governing the density and the thermodynamic state of the hot intra-cluster medium pervading clusters and groups of galaxies: the hierarchical clustering of the DM; the non-gravitational energy and momentum fed back into the ICM by the condensing baryons. We base on a SAM of galaxy formation and clustering to describe how the baryons are partitioned among the hot, the cool and the stellar phase; the partition shifts as the galaxies cluster hierarchically, and as the feedback by stellar winds and SN explosions follows the star formation. Their impact is amplified by the same large scale accretion shocks that thermalize the gravitational energy of gas falling into the growing potential wells. We compute the Compton parameter yy, and find a relation of yy with the ICM temperature, the y−Ty-T relation, which departs from the self-similar scaling and bends down at temperatures typical of galaxy groups. We model-independently relate this with the analogous behaviour of the L_x - T relation, and discuss to what extent our results are generic of the hierarchical models of galaxy formation and clustering.Comment: 24 pages, 6 figures, submitted to MNRAS; typos correcte

    The Evolution of Active Galactic Nuclei in Warm Dark Matter Cosmology

    Full text link
    Recent measurements of the abundance of AGN with low-luminosities (L_X< 10^44 erg/s in the 2-10 keV energy band) at high redshifts z>4 provide a serious challenge for Cold Dark Matter (CDM) models based on interaction-driven fueling of AGN. Using a semi-analytic model of galaxy formation we investigate how such observations fit in a Warm Dark Matter (WDM) scenario of galaxy formation, and compare the results with those obtained in the standard CDM scenario with different efficiencies for the stellar feedback. Taking on our previous exploration of galaxy formation in WDM cosmology, we assume as a reference case a spectrum which is suppressed - compared to the standard CDM case - below a cut-off scale ~ 0.2$ Mpc corresponding (for thermal relic WDM particles) to a mass m_X=0.75 keV. We run our fiducial semi-analytic model with such a WDM spectrum to derive AGN luminosity functions from z~6 to the present over a wide range of luminosities (10^43< L_X/erg/s < 10^46 in the 2-10 keV X-ray band), to compare with recent observations and with the results in the CDM case. When compared with the standard CDM case, the luminosity distributions we obtain assuming a WDM spectrum are characterized by a similar behaviour at low redshift, and by a flatter slope at faint magnitudes for z>3, which provide an excellent fit to present observations. We discuss how such a result compares with CDM models with maximized feedback efficiency, and how future deep AGN surveys will allow for a better discrimination between feedback and cosmological effects on the evolution of AGN in interaction-driven models for AGN fueling.Comment: Accepted for publication in The Astrophysical Journal; typos and references correcte

    Henri Temianka Correspondence; (menci)

    Get PDF
    https://digitalcommons.chapman.edu/temianka_correspondence/2388/thumbnail.jp

    Triggering Active Galactic Nuclei in Hierarchical Galaxy Formation: Disk instability vs. Interactions

    Full text link
    Using a semi analytic model for galaxy formation we investigate the effects of Black Hole accretion triggered by disk instabilities (DI) in isolated galaxies on the evolution of AGN. Specifically, we took on, developed and expanded the Hopkins & Quataert (2011) model for the mass inflow following disk perturbations, and compare the corresponding evolution of the AGN population with that arising in a scenario where galaxy interactions trigger AGN (IT mode). We extended and developed the DI model by including different disk surface density profiles, to study the maximal contribution of DI to the evolution of the AGN population. We obtained the following results: i) for luminosities corresponding to M1450≳−26M_{1450}\gtrsim -26 the DI mode can provide the BH accretion needed to match the observed AGN luminosity functions up to z≈4.5z \approx 4.5; in such a luminosity range and redshift, it can compete with the IT scenario as the main driver of cosmological evolution of AGN; ii) The DI scenario cannot provide the observed abundance of high-luminosity QSO with M1450≲−26M_{1450}\lesssim -26 AGN, as well as the abundance of high-redhshift z≈4.5z \approx 4.5 QSOs with M1450≲−24M_{1450}\lesssim -24, while the IT scenario provides an acceptable match up to z≈6z \approx 6, as found in our earliest works; iii) The dispersion of the distributions of Eddington ratio for low- and intermediate-luminosity AGN (bolometric LAGNL_{AGN} = 104310^{43} - 104510^{45} erg/s) is predicted to be much smaller in the DI scenario compared to the IT mode; iv) The above conclusions are robust with respect to the explored variants of the Hopkins & Quataert (2011) model. We discuss the physical origin of our findings, and how it is possible to pin down the dominant fueling mechanism in the low-intermediate luminosity range M1450≳−26M_{1450}\gtrsim -26 where both the DI and the IT modes are viable candidates as drivers for the AGN evolution.Comment: Accepted for publication in Astronomy & Astrophysics, 24 pages, 8 figures; updated reference

    The interaction-driven starburst contribution to the cosmic star formation rate density

    Full text link
    An increasing amount of observational evidence supports the notion that there are two modes of star formation: a quiescent mode in disk-like galaxies, and a starburst mode, which is generally interpreted as driven by merging. Using a semi-analytic model of galaxy formation, we derive the relative contribution to the cosmic star formation rate density of quiescently starforming and starburst galaxies, predicted under the assumption that starburst events are triggered by galaxy encounters (merging and fly-by kind) during their merging histories. We show that, within this framework, quiescently starforming galaxies dominate the cosmic star formation rate density at all redshifts. The contribution of the burst-dominated starforming galaxies increases with redshift, rising from <5% at low redshift (z5. We estimated that the fraction of the final (z=0) galaxy stellar mass which is formed through the burst component of star formation is ~10% for 10^10 M_\odot<M_*<10^11.5 M_\odot. Starburst galaxies, selected according to their distance from the galaxy main sequence, account for ~10% of the star formation rate density in the redshift interval 1.5<z<2.5, i.e. at the cosmic peak of the star formation activity.Comment: 11 pages, 8 figures. Accepted for publication in A&

    Note su reperti antinoiti

    Get PDF
    • …
    corecore