97 research outputs found

    Discovering Usability: Comparing Two Discovery Systems at One Academic Library

    Get PDF
    In the spring of 2013, the University Library at the University of Illinois at Chicago was in the unique position of having access to two discovery systems, Summon and WorldCat Local, at the same time. When tasked with choosing between the two systems, librarians undertook a usability study of Summon and WorldCat Local. The goal of this study was two-fold: to test the ease-of-use of each discovery system with an eye toward identifying one tool to retain for the longer term, and to learn about the search behaviors of different types of user groups. Eighteen subjects, consisting of undergraduate students, graduate students and faculty, participated in the study. Participants performed usability tasks using each tool and answered pre-task and post-task questions. While there was no clear preference among study participants for either discovery layer, individual groups did express preferences. Faculty, for example, preferred Summon to WorldCat Local at a rate of five to one. The study findings are explored in detail through an examination of the three major data sets produced by the usability test instrument: results derived from tasks performed by participants as part of the study; themes and trends identified by the investigators within the recorded participant tests; and discovery tool preferences as determined from pre-task and post-task questionnaires administered to study participants. This study has implications for librarians engaged in information literacy instruction; those considering implementing discovery tools, as well as for librarians currently using Summon or WorldCat Local at their libraries

    EST Analysis of Ostreococcus lucimarinus, the Most Compact Eukaryotic Genome, Shows an Excess of Introns in Highly Expressed Genes

    Get PDF
    Background: The genome of the pico-eukaryotic (bacterial-sized) prasinophyte green alga Ostreococcus lucimarinus has one of the highest gene densities known in eukaryotes, yet it contains many introns. Phylogenetic studies suggest this unusually compact genome (13.2 Mb) is an evolutionarily derived state among prasinophytes. The presence of introns in the highly reduced O. lucimarinus genome appears to be in opposition to simple explanations of genome evolution based on unidirectional tendencies, either neutral or selective. Therefore, patterns of intron retention in this species can potentially provide insights into the forces governing intron evolution. Methodology/Principal Findings: Here we studied intron features and levels of expression in O. lucimarinus using expressed sequence tags (ESTs) to annotate the current genome assembly. ESTs were assembled into unigene clusters that were mapped back to the O. lucimarinus Build 2.0 assembly using BLAST and the level of gene expression was inferred from the number of ESTs in each cluster. We find a positive correlation between expression levels and both intron number (R = +0.0893, p =,0.0005) and intron density (number of introns/kb of CDS; R = +0.0753, p =,0.005). Conclusions/Significance: In a species with a genome that has been recently subjected to a great reduction of non-coding DNA, these results imply the existence of selective/functional roles for introns that are principally detectable in highly expressed genes. In these cases, introns are likely maintained by balancing the selective forces favoring their maintenanc

    Genetic Networks Controlling Structural Outcome of Glucosinolate Activation across Development

    Get PDF
    Most phenotypic variation present in natural populations is under polygenic control, largely determined by genetic variation at quantitative trait loci (QTLs). These genetic loci frequently interact with the environment, development, and each other, yet the importance of these interactions on the underlying genetic architecture of quantitative traits is not well characterized. To better study how epistasis and development may influence quantitative traits, we studied genetic variation in Arabidopsis glucosinolate activation using the moderately sized Bayreuth×Shahdara recombinant inbred population, in terms of number of lines. We identified QTLs for glucosinolate activation at three different developmental stages. Numerous QTLs showed developmental dependency, as well as a large epistatic network, centered on the previously cloned large-effect glucosinolate activation QTL, ESP. Analysis of Heterogeneous Inbred Families validated seven loci and all of the QTL×DPG (days post-germination) interactions tested, but was complicated by the extensive epistasis. A comparison of transcript accumulation data within 211 of these RILs showed an extensive overlap of gene expression QTLs for structural specifiers and their homologs with the identified glucosinolate activation loci. Finally, we were able to show that two of the QTLs are the result of whole-genome duplications of a glucosinolate activation gene cluster. These data reveal complex age-dependent regulation of structural outcomes and suggest that transcriptional regulation is associated with a significant portion of the underlying ontogenic variation and epistatic interactions in glucosinolate activation

    State of the Antarctic and Southern Ocean Climate System

    Get PDF
    This paper reviews developments in our understanding of the state of the Antarctic and Southern Ocean climate and its relation to the global climate system over the last few millennia. Climate over this and earlier periods has not been stable, as evidenced by the occurrence of abrupt changes in atmospheric circulation and temperature recorded in Antarctic ice core proxies for past climate. Two of the most prominent abrupt climate change events are characterized by intensification of the circumpolar westerlies (also known as the Southern Annular Mode) between ∼6000 and 5000 years ago and since 1200–1000 years ago. Following the last of these is a period of major trans-Antarctic reorganization of atmospheric circulation and temperature between A.D. 1700 and 1850. The two earlier Antarctic abrupt climate change events appear linked to but predate by several centuries even more abrupt climate change in the North Atlantic, and the end of the more recent event is coincident with reorganization of atmospheric circulation in the North Pacific. Improved understanding of such events and of the associations between abrupt climate change events recorded in both hemispheres is critical to predicting the impact and timing of future abrupt climate change events potentially forced by anthropogenic changes in greenhouse gases and aerosols. Special attention is given to the climate of the past 200 years, which was recorded by a network of recently available shallow firn cores, and to that of the past 50 years, which was monitored by the continuous instrumental record. Significant regional climate changes have taken place in the Antarctic during the past 50 years. Atmospheric temperatures have increased markedly over the Antarctic Peninsula, linked to nearby ocean warming and intensification of the circumpolar westerlies. Glaciers are retreating on the peninsula, in Patagonia, on the sub-Antarctic islands, and in West Antarctica adjacent to the peninsula. The penetration of marine air masses has become more pronounced over parts of West Antarctica. Above the surface, the Antarctic troposphere has warmed during winter while the stratosphere has cooled year-round. The upper kilometer of the circumpolar Southern Ocean has warmed, Antarctic Bottom Water across a wide sector off East Antarctica has freshened, and the densest bottom water in the Weddell Sea has warmed. In contrast to these regional climate changes, over most of Antarctica, near-surface temperature and snowfall have not increased significantly during at least the past 50 years, and proxy data suggest that the atmospheric circulation over the interior has remained in a similar state for at least the past 200 years. Furthermore, the total sea ice cover around Antarctica has exhibited no significant overall change since reliable satellite monitoring began in the late 1970s, despite large but compensating regional changes. The inhomogeneity of Antarctic climate in space and time implies that recent Antarctic climate changes are due on the one hand to a combination of strong multidecadal variability and anthropogenic effects and, as demonstrated by the paleoclimate record, on the other hand to multidecadal to millennial scale and longer natural variability forced through changes in orbital insolation, greenhouse gases, solar variability, ice dynamics, and aerosols. Model projections suggest that over the 21st century the Antarctic interior will warm by 3.4° ± 1°C, and sea ice extent will decrease by ∼30%. Ice sheet models are not yet adequate enough to answer pressing questions about the effect of projected warming on mass balance and sea level. Considering the potentially major impacts of a warming climate on Antarctica, vigorous efforts are needed to better understand all aspects of the highly coupled Antarctic climate system as well as its influence on the Earth\u27s climate and oceans

    Limits to reproduction and seed size-number tradeoffs that shape forest dominance and future recovery

    Get PDF
    The relationships that control seed production in trees are fundamental to understanding the evolution of forest species and their capacity to recover from increasing losses to drought, fire, and harvest. A synthesis of fecundity data from 714 species worldwide allowed us to examine hypotheses that are central to quantifying reproduction, a foundation for assessing fitness in forest trees. Four major findings emerged. First, seed production is not constrained by a strict trade-off between seed size and numbers. Instead, seed numbers vary over ten orders of magnitude, with species that invest in large seeds producing more seeds than expected from the 1:1 trade-off. Second, gymnosperms have lower seed production than angiosperms, potentially due to their extra investments in protective woody cones. Third, nutrient-demanding species, indicated by high foliar phosphorus concentrations, have low seed production. Finally, sensitivity of individual species to soil fertility varies widely, limiting the response of community seed production to fertility gradients. In combination, these findings can inform models of forest response that need to incorporate reproductive potential

    Limits to reproduction and seed size-number trade-offs that shape forest dominance and future recovery

    Get PDF
    International audienceThe relationships that control seed production in trees are fundamental to understanding the evolution of forest species and their capacity to recover from increasing losses to drought, fire, and harvest. A synthesis of fecundity data from 714 species worldwide allowed us to examine hypotheses that are central to quantifying reproduction, a foundation for assessing fitness in forest trees. Four major findings emerged. First, seed production is not constrained by a strict trade-off between seed size and numbers. Instead, seed numbers vary over ten orders of magnitude, with species that invest in large seeds producing more seeds than expected from the 1:1 trade-off. Second, gymnosperms have lower seed production than angiosperms, potentially due to their extra investments in protective woody cones. Third, nutrient-demanding species, indicated by high foliar phosphorus concentrations, have low seed production. Finally, sensitivity of individual species to soil fertility varies widely, limiting the response of community seed production to fertility gradients. In combination, these findings can inform models of forest response that need to incorporate reproductive potential

    World Congress Integrative Medicine & Health 2017: Part one

    Get PDF

    Symptoms, investigations and management of patients with cancer of the oesophagus and gastro-oesophageal junction in Australia

    No full text
    Objective: To document presenting symptoms, investigations and management for Australian patients with oesophageal adenocarcinoma (OAC), gastro-oesophageal junction adenocarcinoma (GOJAC) and oesophageal squamous cell carcinoma (OSCC). Design, setting and participants: Cross-sectional study of a population-based sample of 1100 Australian patients aged 18-79 years with histologically confirmed oesophageal cancer diagnosed in 2002-2005, using data from cancer registries and treatment centres, supplemented with clinical information collected through medical record review in 2006-2007 and mortality information collected in 2008. Main outcome measures: Prevalence of primary symptoms, and staging investigations and treatment modalities used. Results: The primary presenting symptom was dysphagia, which was self-reported by 41%, 39% and 48% of patients with OAC, GOJAC and OSCC, respectively. Less common symptoms were reflux, chest pain, bleeding and weight loss. All patients underwent endoscopy, most had a staging computed tomography scan (OAC 93%, GOJAC 95% and OSCC 93%), and about half had positron emission tomography scans (OAC 51%, GOJAC 44% and OSCC 42%). Pretreatment tumour stage was reported in 25% of records, and could be derived from results of investigations in a further 23%, but the remaining half lacked sufficient information to ascribe a pretreatment stage. Curative treatments were attempted for 60% of OAC, 88% of GOJAC and 65% of OSCC patients. Surgery was performed on 52% of OAC, 83% of GOJAC and 41% of OSCC patients. About two-thirds of surgical patients received additional therapies. Conclusions: With anticipated increases in oesophageal cancer incidence, the resources required to diagnose and manage patients with oesphageal cancer are also likely to rise. Our data provide a baseline from which to plan for the future care of patients with cancers of the oesophagus

    Intra-operative ultrasound elasticity imaging for monitoring of hepatic tumour thermal ablation

    Get PDF
    AbstractBackgroundThermal ablation is an accepted therapy for selected hepatic malignancies. However, the reliability of thermal ablation is limited by the inability to accurately monitor and confirm completeness of tumour destruction in real time. We investigated the ability of ultrasound elasticity imaging (USEI) to monitor thermal ablation.ObjectivesCapitalizing on the known increased stiffness that occurs with protein denaturation and dehydration during thermal therapy, we sought to investigate the feasibility and accuracy of USEI for monitoring of liver tumour ablation.MethodsA model for hepatic tumours was developed and elasticity images of liver ablation were acquired in in vivo animal studies, comparing the elasticity images to gross specimens. A clinical pilot study was conducted using USEI in nine patients undergoing open radiofrequency ablation for hepatic malignancies. The size and shape of thermal lesions on USEI were compared to B-mode ultrasound and post-ablation computed tomography (CT).ResultsIn both in vivo animal studies and in the clinical trial, the boundary of thermal lesions was significantly more conspicuous on USEI when compared with B-mode imaging. Animal studies demonstrated good correlation between the diameter of ablated lesions on USEI and the gross specimen (r=0.81). Moreover, high-quality strain images were generated in real time during therapy. In patients undergoing tumour ablation, a good size correlation was observed between USEI and post-operative CT (r=0.80).ConclusionUSEI can be a valuable tool for the accurate monitoring and real-time verification of successful thermal ablation of liver tumours
    corecore