43 research outputs found
Queer Heterotopias in Higher Education: LGBTQ Student Identity in Web Logging
This study used a comparative case study method to explore online web logs (blogs) and vlogs of 7 higher education students who identify as LGBTQ. The researcher sought to examine (a) how higher education students who identify as LGBTQ navigate their school and daily life experiences in relationship with their identity on web logs; and (b) how these students reinforce or disrupt heteronormative assumptions regarding sexuality on web logs, potentially creating queer heterotopias online. The public domain web logs of the 7 participants were examined over a period of 1 year. DâAugelliâs (1994) lifespan model of sexual identity development served as a framework for directed textual content analysis. A theoretical framework of queer theory was used to understand how the bloggers and vloggers reinforced or transgressed heteronormative conceptions of sexuality. Seven primary themes emerged from the findings: the presence of each of the 6 lifespan stages of DâAugelliâs (1994) model, as well as a 7th theme focused on the university experience specifically. The heartfelt and courageous identity work that the bloggers shared revealed the importance of the online community to higher education students who are navigating an emerging LGBTQ life
Tissue Glucocorticoid Metabolism in Adrenal Insufficiency:A Prospective Study of Dual-release Hydrocortisone Therapy
Background: Patients with adrenal insufficiency (AI) require life-long glucocorticoid (GC) replacement therapy. Within tissues, cortisol (F) availability is under the control of the isozymes of 11ÎČ-hydroxysteroid dehydrogenase (11ÎČ-HSD). We hypothesize that corticosteroid metabolism is altered in patients with AI because of the nonphysiological pattern of current immediate release hydrocortisone (IR-HC) replacement therapy. The use of a once-daily dual-release hydrocortisone (DR-HC) preparation, (PlenadrenÂź), offers a more physiological cortisol profile and may alter corticosteroid metabolism in vivo.Study Design and Methods: Prospective crossover study assessing the impact of 12 weeks of DR-HC on systemic GC metabolism (urinary steroid metabolome profiling), cortisol activation in the liver (cortisone acetate challenge test), and subcutaneous adipose tissue (microdialysis, biopsy for gene expression analysis) in 51 patients with AI (primary and secondary) in comparison to IR-HC treatment and age- and BMI-matched controls.Results: Patients with AI receiving IR-HC had a higher median 24-hour urinary excretion of cortisol compared with healthy controls (72.1 ”g/24 hours [IQR 43.6-124.2] vs 51.9 ”g/24 hours [35.5-72.3], P = .02), with lower global activity of 11ÎČ-HSD2 and higher 5-alpha reductase activity. Following the switch from IR-HC to DR-HC therapy, there was a significant reduction in urinary cortisol and total GC metabolite excretion, which was most significant in the evening. There was an increase in 11ÎČ-HSD2 activity. Hepatic 11ÎČ-HSD1 activity was not significantly altered after switching to DR-HC, but there was a significant reduction in the expression and activity of 11ÎČ-HSD1 in subcutaneous adipose tissue.Conclusion: Using comprehensive in vivo techniques, we have demonstrated abnormalities in corticosteroid metabolism in patients with primary and secondary AI receiving IR-HC. This dysregulation of pre-receptor glucocorticoid metabolism results in enhanced glucocorticoid activation in adipose tissue, which was ameliorated by treatment with DR-HC
Microbiota regulates visceral pain in the mouse
The perception of visceral pain is a complex process involving the spinal cord and higher order brain structures. Increasing evidence implicates the gut microbiota as a key regulator of brain and behavior, yet it remains to be determined if gut bacteria play a role in visceral sensitivity. We used germ-free mice (GF) to assess visceral sensitivity, spinal cord gene expression and pain-related brain structures. GF mice displayed visceral hypersensitivity accompanied by increases in Toll-like receptor and cytokine gene expression in the spinal cord, which were normalized by postnatal colonization with microbiota from conventionally colonized (CC). In GF mice, the volumes of the anterior cingulate cortex (ACC) and periaqueductal grey, areas involved in pain processing, were decreased and enlarged, respectively, and dendritic changes in the ACC were evident. These findings indicate that the gut microbiota is required for the normal visceral pain sensation
Robust SARS-CoV-2 TÂ cell responses with common TCR?? motifs toward COVID-19 vaccines in patients with hematological malignancy impacting B cells
Immunocompromised hematology patients are vulnerable to severe COVID-19 and respond poorly to vaccination. Relative deficits in immunity are, however, unclear, especially after 3 vaccine doses. We evaluated immune responses in hematology patients across three COVID-19 vaccination doses. Seropositivity was low after a first dose of BNT162b2 and ChAdOx1 (âŒ26%), increased to 59%â75% after a second dose, and increased to 85% after a third dose. While prototypical antibody-secreting cells (ASCs) and T follicular helper (Tfh) cell responses were elicited in healthy participants, hematology patients showed prolonged ASCs and skewed Tfh2/17 responses. Importantly, vaccine-induced expansions of spike-specific and peptide-HLA tetramer-specific CD4+/CD8+ T cells, together with their T cell receptor (TCR) repertoires, were robust in hematology patients, irrespective of B cell numbers, and comparable to healthy participants. Vaccinated patients with breakthrough infections developed higher antibody responses, while T cell responses were comparable to healthy groups. COVID-19 vaccination induces robust T cell immunity in hematology patients of varying diseases and treatments irrespective of B cell numbers and antibody response
A road map for designing and implementing a biological monitoring program
Designing and implementing natural resource monitoring is a challenging endeavor undertaken by many agencies, NGOs, and citizen groups worldwide. Yet many monitoring programs fail to deliver useful information for a variety of administrative (staffing, documentation, and funding) or technical (sampling design and data analysis) reasons. Programs risk failure if they lack a clear motivating problem or question, explicit objectives linked to this problem or question, and a comprehensive conceptual model of the system under study. Designers must consider what âsuccessâ looks like from a resource management perspective, how desired outcomes translate to appropriate attributes to monitor, and how they will be measured. All such efforts should be filtered through the question âWhy is this important?â Failing to address these considerations will produce a program that fails to deliver the desired information. We addressed these issues through creation of a âroad mapâ for designing and implementing a monitoring program, synthesizing multiple aspects of a monitoring program into a single, overarching framework. The road map emphasizes linkages among core decisions to ensure alignment of all components, from problem framing through technical details of data collection and analysis, to program administration. Following this framework will help avoid common pitfalls, keep projects on track and budgets realistic, and aid in program evaluations. The road map has proved useful for monitoring by individuals and teams, those planning new monitoring, and those reviewing existing monitoring and for staff with a wide range of technical and scientific skills
Safety, immunogenicity, and reactogenicity of BNT162b2 and mRNA-1273 COVID-19 vaccines given as fourth-dose boosters following two doses of ChAdOx1 nCoV-19 or BNT162b2 and a third dose of BNT162b2 (COV-BOOST): a multicentre, blinded, phase 2, randomised trial
Background Some high-income countries have deployed fourth doses of COVID-19 vaccines, but the clinical need, effectiveness, timing, and dose of a fourth dose remain uncertain. We aimed to investigate the safety, reactogenicity, and immunogenicity of fourth-dose boosters against COVID-19.Methods The COV-BOOST trial is a multicentre, blinded, phase 2, randomised controlled trial of seven COVID-19 vaccines given as third-dose boosters at 18 sites in the UK. This sub-study enrolled participants who had received BNT162b2 (Pfizer-BioNTech) as their third dose in COV-BOOST and randomly assigned them (1:1) to receive a fourth dose of either BNT162b2 (30 ”g in 0·30 mL; full dose) or mRNA-1273 (Moderna; 50 ”g in 0·25 mL; half dose) via intramuscular injection into the upper arm. The computer-generated randomisation list was created by the study statisticians with random block sizes of two or four. Participants and all study staff not delivering the vaccines were masked to treatment allocation. The coprimary outcomes were safety and reactogenicity, and immunogenicity (antispike protein IgG titres by ELISA and cellular immune response by ELISpot). We compared immunogenicity at 28 days after the third dose versus 14 days after the fourth dose and at day 0 versus day 14 relative to the fourth dose. Safety and reactogenicity were assessed in the per-protocol population, which comprised all participants who received a fourth-dose booster regardless of their SARS-CoV-2 serostatus. Immunogenicity was primarily analysed in a modified intention-to-treat population comprising seronegative participants who had received a fourth-dose booster and had available endpoint data. This trial is registered with ISRCTN, 73765130, and is ongoing.Findings Between Jan 11 and Jan 25, 2022, 166 participants were screened, randomly assigned, and received either full-dose BNT162b2 (n=83) or half-dose mRNA-1273 (n=83) as a fourth dose. The median age of these participants was 70·1 years (IQR 51·6â77·5) and 86 (52%) of 166 participants were female and 80 (48%) were male. The median interval between the third and fourth doses was 208·5 days (IQR 203·3â214·8). Pain was the most common local solicited adverse event and fatigue was the most common systemic solicited adverse event after BNT162b2 or mRNA-1273 booster doses. None of three serious adverse events reported after a fourth dose with BNT162b2 were related to the study vaccine. In the BNT162b2 group, geometric mean anti-spike protein IgG concentration at day 28 after the third dose was 23 325 ELISA laboratory units (ELU)/mL (95% CI 20 030â27 162), which increased to 37 460 ELU/mL (31 996â43 857) at day 14 after the fourth dose, representing a significant fold change (geometric mean 1·59, 95% CI 1·41â1·78). There was a significant increase in geometric mean anti-spike protein IgG concentration from 28 days after the third dose (25 317 ELU/mL, 95% CI 20 996â30 528) to 14 days after a fourth dose of mRNA-1273 (54 936 ELU/mL, 46 826â64 452), with a geometric mean fold change of 2·19 (1·90â2·52). The fold changes in anti-spike protein IgG titres from before (day 0) to after (day 14) the fourth dose were 12·19 (95% CI 10·37â14·32) and 15·90 (12·92â19·58) in the BNT162b2 and mRNA-1273 groups, respectively. T-cell responses were also boosted after the fourth dose (eg, the fold changes for the wild-type variant from before to after the fourth dose were 7·32 [95% CI 3·24â16·54] in the BNT162b2 group and 6·22 [3·90â9·92] in the mRNA-1273 group).Interpretation Fourth-dose COVID-19 mRNA booster vaccines are well tolerated and boost cellular and humoral immunity. Peak responses after the fourth dose were similar to, and possibly better than, peak responses after the third dose
Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015 : a systematic analysis for the Global Burden of Disease Study 2015
Background Improving survival and extending the longevity of life for all populations requires timely, robust evidence on local mortality levels and trends. The Global Burden of Disease 2015 Study (GBD 2015) provides a comprehensive assessment of all-cause and cause-specific mortality for 249 causes in 195 countries and territories from 1980 to 2015. These results informed an in-depth investigation of observed and expected mortality patterns based on sociodemographic measures. Methods We estimated all-cause mortality by age, sex, geography, and year using an improved analytical approach originally developed for GBD 2013 and GBD 2010. Improvements included refinements to the estimation of child and adult mortality and corresponding uncertainty, parameter selection for under-5 mortality synthesis by spatiotemporal Gaussian process regression, and sibling history data processing. We also expanded the database of vital registration, survey, and census data to 14 294 geography-year datapoints. For GBD 2015, eight causes, including Ebola virus disease, were added to the previous GBD cause list for mortality. We used six modelling approaches to assess cause-specific mortality, with the Cause of Death Ensemble Model (CODEm) generating estimates for most causes. We used a series of novel analyses to systematically quantify the drivers of trends in mortality across geographies. First, we assessed observed and expected levels and trends of cause-specific mortality as they relate to the Socio-demographic Index (SDI), a summary indicator derived from measures of income per capita, educational attainment, and fertility. Second, we examined factors affecting total mortality patterns through a series of counterfactual scenarios, testing the magnitude by which population growth, population age structures, and epidemiological changes contributed to shifts in mortality. Finally, we attributed changes in life expectancy to changes in cause of death. We documented each step of the GBD 2015 estimation processes, as well as data sources, in accordance with Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER). Findings Globally, life expectancy from birth increased from 61.7 years (95% uncertainty interval 61.4-61.9) in 1980 to 71.8 years (71.5-72.2) in 2015. Several countries in sub-Saharan Africa had very large gains in life expectancy from 2005 to 2015, rebounding from an era of exceedingly high loss of life due to HIV/AIDS. At the same time, many geographies saw life expectancy stagnate or decline, particularly for men and in countries with rising mortality from war or interpersonal violence. From 2005 to 2015, male life expectancy in Syria dropped by 11.3 years (3.7-17.4), to 62.6 years (56.5-70.2). Total deaths increased by 4.1% (2.6-5.6) from 2005 to 2015, rising to 55.8 million (54.9 million to 56.6 million) in 2015, but age-standardised death rates fell by 17.0% (15.8-18.1) during this time, underscoring changes in population growth and shifts in global age structures. The result was similar for non-communicable diseases (NCDs), with total deaths from these causes increasing by 14.1% (12.6-16.0) to 39.8 million (39.2 million to 40.5 million) in 2015, whereas age-standardised rates decreased by 13.1% (11.9-14.3). Globally, this mortality pattern emerged for several NCDs, including several types of cancer, ischaemic heart disease, cirrhosis, and Alzheimer's disease and other dementias. By contrast, both total deaths and age-standardised death rates due to communicable, maternal, neonatal, and nutritional conditions significantly declined from 2005 to 2015, gains largely attributable to decreases in mortality rates due to HIV/AIDS (42.1%, 39.1-44.6), malaria (43.1%, 34.7-51.8), neonatal preterm birth complications (29.8%, 24.8-34.9), and maternal disorders (29.1%, 19.3-37.1). Progress was slower for several causes, such as lower respiratory infections and nutritional deficiencies, whereas deaths increased for others, including dengue and drug use disorders. Age-standardised death rates due to injuries significantly declined from 2005 to 2015, yet interpersonal violence and war claimed increasingly more lives in some regions, particularly in the Middle East. In 2015, rotaviral enteritis (rotavirus) was the leading cause of under-5 deaths due to diarrhoea (146 000 deaths, 118 000-183 000) and pneumococcal pneumonia was the leading cause of under-5 deaths due to lower respiratory infections (393 000 deaths, 228 000-532 000), although pathogen-specific mortality varied by region. Globally, the effects of population growth, ageing, and changes in age-standardised death rates substantially differed by cause. Our analyses on the expected associations between cause-specific mortality and SDI show the regular shifts in cause of death composition and population age structure with rising SDI. Country patterns of premature mortality (measured as years of life lost [YLLs]) and how they differ from the level expected on the basis of SDI alone revealed distinct but highly heterogeneous patterns by region and country or territory. Ischaemic heart disease, stroke, and diabetes were among the leading causes of YLLs in most regions, but in many cases, intraregional results sharply diverged for ratios of observed and expected YLLs based on SDI. Communicable, maternal, neonatal, and nutritional diseases caused the most YLLs throughout sub-Saharan Africa, with observed YLLs far exceeding expected YLLs for countries in which malaria or HIV/AIDS remained the leading causes of early death. Interpretation At the global scale, age-specific mortality has steadily improved over the past 35 years; this pattern of general progress continued in the past decade. Progress has been faster in most countries than expected on the basis of development measured by the SDI. Against this background of progress, some countries have seen falls in life expectancy, and age-standardised death rates for some causes are increasing. Despite progress in reducing age-standardised death rates, population growth and ageing mean that the number of deaths from most non-communicable causes are increasing in most countries, putting increased demands on health systems. Copyright (C) The Author(s). Published by Elsevier Ltd.Peer reviewe
A Comparison of Dietary Patterns and Factors Influencing Food Choice among Ethnic Groups Living in One Locality: A Systematic Review
Globally, the number of minority ethnic groups in high-income countries is increasing. However, despite this demographic change, most national food consumption surveys are not representative of ethnically diverse populations. In consequence, many ethnic minoritiesâ dietary intakes are underreported, meaning that accurate analysis of food intake and nutrient status among these groups is not possible. This systematic review aims to address these gaps and understand differences in dietary intakes and influencers of dietary habits of ethnic groups worldwide. A systematic search was conducted through three databases (Pubmed, Web of Science and Scopus) and manual searches, generating n = 56,647 results. A final search of these databases was completed on 13 September 2021, resulting in a total of 49 studies being included in this review. Overall, food group intakesâparticularly fruit, vegetable and fish intakeâand diet quality scores were seen to differ between ethnicities. Overall Black/African American groups were reported to be among the poorest consumers of fruit and vegetables, whilst Asian groups achieved high diet quality scores due to higher fish intakes and lower fat intakes compared to other groups. Limited data investigated how nutrient intakes, dietary and meal patterns compared between groups, meaning that not all aspects of dietary intake could be compared. Socioeconomic status and food availability appeared to be associated with food choice of ethnic groups, however, confounding factors should be considered more closely. Future work should focus on comparing nutrient intakes and meal patterns between ethnicities and investigate potential targeted interventions which may support adherence to food-based dietary guidelines by all ethnic groups