287 research outputs found

    Alterations in prefrontal-limbic functional activation and connectivity in chronic stress-induced visceral hyperalgesia.

    Get PDF
    Repeated water avoidance stress (WAS) induces sustained visceral hyperalgesia (VH) in rats measured as enhanced visceromotor response to colorectal distension (CRD). This model incorporates two characteristic features of human irritable bowel syndrome (IBS), VH and a prominent role of stress in the onset and exacerbation of IBS symptoms. Little is known regarding central mechanisms underlying the stress-induced VH. Here, we applied an autoradiographic perfusion method to map regional and network-level neural correlates of VH. Adult male rats were exposed to WAS or sham treatment for 1 hour/day for 10 days. The visceromotor response was measured before and after the treatment. Cerebral blood flow (CBF) mapping was performed by intravenous injection of radiotracer ([(14)C]-iodoantipyrine) while the rat was receiving a 60-mmHg CRD or no distension. Regional CBF-related tissue radioactivity was quantified in autoradiographic images of brain slices and analyzed in 3-dimensionally reconstructed brains with statistical parametric mapping. Compared to sham rats, stressed rats showed VH in association with greater CRD-evoked activation in the insular cortex, amygdala, and hypothalamus, but reduced activation in the prelimbic area (PrL) of prefrontal cortex. We constrained results of seed correlation analysis by known structural connectivity of the PrL to generate structurally linked functional connectivity (SLFC) of the PrL. Dramatic differences in the SLFC of PrL were noted between stressed and sham rats under distension. In particular, sham rats showed negative correlation between the PrL and amygdala, which was absent in stressed rats. The altered pattern of functional brain activation is in general agreement with that observed in IBS patients in human brain imaging studies, providing further support for the face and construct validity of the WAS model for IBS. The absence of prefrontal cortex-amygdala anticorrelation in stressed rats is consistent with the notion that impaired corticolimbic modulation acts as a central mechanism underlying stress-induced VH

    Toll-Like Receptor 4 Regulates Chronic Stress-Induced Visceral Pain in Mice

    Get PDF
    Background Functional gastrointestinal disorders, which have visceral hypersensitivity as a core symptom, are frequently comorbid with stress-related psychiatric disorders. Increasing evidence points to a key role for toll-like receptor 4 (TLR4) in chronic pain states of somatic origin. However, the central contribution of TLR4 in visceral pain sensation remains elusive. Methods With pharmacological and genetic approaches, we investigated the involvement of TLR4 in the modulation of visceral pain. The TLR4-deficient and wild-type mice were exposed to chronic stress. Visceral pain was evaluated with colorectal distension. Protein expression levels for TLR4, Cd11b, and glial fibrillary acidic protein (glial cells markers) were quantified in the lumbar region of the spinal cord, prefrontal cortex (PFC), and hippocampus. To evaluate the effect of blocking TLR4 on visceral nociception, TAK-242, a selective TLR4 antagonist, was administered peripherally (intravenous) and centrally (intracerebroventricular and intra-PFC) (n = 10–12/experimental group). Results The TLR4 deficiency reduced visceral pain and prevented the development of chronic psychosocial stress-induced visceral hypersensitivity. Increased expression of TLR4 coupled with enhanced glia activation in the PFC and increased levels of proinflammatory cytokines were observed after chronic stress in wild-type mice. Administration of a TLR4 specific antagonist, TAK-242, attenuated visceral pain sensation in animals with functional TLR4 when administrated centrally and peripherally. Moreover, intra-PFC TAK-242 administration also counteracted chronic stress-induced visceral hypersensitivity. Conclusions Our results reveal a novel role for TLR4 within the PFC in the modulation of visceral nociception and point to TLR4 as a potential therapeutic target for the development of drugs to treat visceral hypersensitivity.The work described herein was supported by the Alimentary Pharmabiotic Centre, funded by Science Foundation Ireland (SFI), through the Irish Government’s National Development Plan. The authors and their work were supported by SFI (Grant Numbers 02/CE/B124 and 07/CE/B1368 and SFI/12/RC/2273)

    Chronic unpredictable stress regulates visceral adipocyte-mediated glucose metabolism and inflammatory circuits in male rats

    Get PDF
    Chronic psychological stress is a prominent risk factor involved in the pathogenesis of many complex diseases, including major depression, obesity, and type II diabetes. Visceral adipose tissue is a key endocrine organ involved in the regulation of insulin action and an important component in the development of insulin resistance. Here, we examined for the first time the changes on visceral adipose tissue physiology and on adipocyte-associated insulin sensitivity and function after chronic unpredictable stress in rats. Male rats were subjected to chronic unpredictable stress for 35 days. Total body and visceral fat was measured. Cytokines and activated intracellular kinase levels were determined using high-throughput multiplex assays. Adipocyte function was assessed via tritiated glucose uptake assay. Stressed rats showed no weight gain, and their fat/lean mass ratio increased dramatically compared to control animals. Stressed rats had significantly higher mesenteric fat content and epididymal fat pad weight and demonstrated reduced serum glucose clearing capacity following glucose challenge. Alterations in fat depot size were mainly due to changes in adipocyte numbers and not size. High-throughput molecular screening in adipocytes isolated from stressed rats revealed activation of intracellular inflammatory, glucose metabolism, and MAPK networks compared to controls, as well as significantly reduced glucose uptake capacity in response to insulin stimulation. Our study identifies the adipocyte as a key regulator of the effects of chronic stress on insulin resistance, and glucose metabolism, with important ramifications in the pathophysiology of several stress-related disease states

    Irritable bowel syndrome - An inflammatory disease involving mast cells

    Get PDF
    Irritable bowel syndrome (IBS) is traditionally defined as a functional disorder - that is the presence of symptoms in the absence of demonstrable pathological abnormalities. In recent times, low grade inflammatory infiltrates in both the small and large bowel of some patients with IBS - often rich in mast cells, along with serological markers of low grade inflammation have focussed attention on IBS as an inflammatory disease. The observation that mast cells often lie in close association to enteric neurons, and in-vitro and in-vivo animal studies demonstrating that mast cell mediators may influence enteric motility provides a biologically plausible causal mechanism in IBS. Pilot studies on patients with IBS using the mast cell stabiliser sodium cromoglycate ('proof of concept') have been encouraging. The essential question remains why mast cells infiltrate the bowel of IBS patients. A disturbance of the 'brain-gut axis' is the current favoured hypothesis, whereby childhood stress or psychiatric comorbidity act via neuro-immune mechanisms to modulate low grade inflammation. An alternative hypothesis is that food allergy may be responsible. Serum specific IgE, and skin prick tests are not elevated in IBS patients, suggesting type 1 IgE mediated food allergy is not the cause. However questionnaire based studies indicate IBS patients have higher rates of atopic disease, and increased bronchial reactivity to methacholine has been demonstrated. In this review, we highlight the potential role of mast cells in IBS, and current and future research directions into this intriguing condition

    Inhibition of microglial activity alters spinal wide dynamic range neuron discharge and reduces microglial Toll-like receptor 4 expression in neuropathic rats

    Get PDF
    It is believed that neuropathic pain results from aberrant neuronal discharges although some evidence suggests that the activation of glia cells contributes to pain after an injury to the nervous system. This study aimed to evaluate the role of microglial activation on the hyper-responsiveness of wide dynamic range neurons (WDR) and Toll-like receptor 4 (TLR4) expressions in a chronic constriction injury (CCI) model of neuropathic pain in rats. Adult male Wistar rats (230 � 30 g) underwent surgery for induction of CCI neuropathy. Six days after surgery, administration of minocycline (10, 20, and 40 mg/kg, i.p.) was initiated and continued until day 14. After administration of the last dose of minocycline or saline, a behavioral test was conducted, then animals were sacrificed and lumbar segments of the spinal cord were collected for Western blot analysis of TLR4 expression. The electrophysiological properties of WDR neurons were investigated by single unit recordings in separate groups. The findings showed that after CCI, in parallel with thermal hyperalgesia, the expression of TLR4 in the spinal cord and the evoked response of the WDR neurons to electrical, mechanical, and thermal stimulation significantly increased. Post-injury administration of minocycline effectively decreased thermal hyperalgesia, TLR4 expression, and hyperresponsiveness of WDR neurons in CCI rats. The results of this study indicate that post-injury, repeated administration of minocycline attenuated neuropathic pain by suppressing microglia activation and reducing WDR neuron hyperresponsiveness. This study confirms that post-injury modulation of microglial activity is a new strategy for treating neuropathic pain

    Plasma Hormones Facilitated the Hypermotility of the Colon in a Chronic Stress Rat Model

    Get PDF
    Objective: To study the relationship between brain-gut peptides, gastrointestinal hormones and altered motility in a rat model of repetitive water avoidance stress (WAS), which mimics the irritable bowel syndrome (IBS). Methods: Male Wistar rats were submitted daily to 1-h of water avoidance stress (WAS) or sham WAS (SWAS) for 10 consecutive days. Plasma hormones were determined using Enzyme Immunoassay Kits. Proximal colonic smooth muscle (PCSM) contractions were studied in an organ bath system. PCSM cells were isolated by enzymatic digestion and IKv and IBKca were recorded by the patch-clamp technique. Results: The number of fecal pellets during 1 h of acute restraint stress and the plasma hormones levels of substance P (SP), thyrotropin-releasing hormone (TRH), motilin (MTL), and cholecystokinin (CCK) in WAS rats were significantly increased compared with SWAS rats, whereas vasoactive intestinal peptide (VIP), calcitonin gene-related peptide (CGRP) and corticotropin releasing hormone (CRH) in WAS rats were not significantly changed and peptide YY (PYY) in WAS rats was significantly decreased. Likewise, the amplitudes of spontaneous contractions of PCSM in WAS rats were significantly increased comparing with SWAS rats. The plasma of WAS rats (100 ml) decreased the amplitude of spontaneous contractions of controls. The IKv and IBKCa of PCSMs were significantly decreased in WAS rats compared with SWAS rats and the plasma of WAS rats (100 ml) increased the amplitude of IKv and IBKCa in normal rats

    Obesity Takes Its Toll on Visceral Pain: High-Fat Diet Induces Toll-Like Receptor 4- Dependent Visceral Hypersensitivity

    Get PDF
    Exposure to high-fat diet induces both, peripheral and central alterations in TLR4 expression. Moreover, functional TLR4 is required for the development of high-fat diet-induced obesity. Recently, central alterations in TLR4 expression have been associated with the modulation of visceral pain. However, it remains unknown whether there is a functional interaction between the role of TLR4 in diet-induced obesity and in visceral pain. In the present study we investigated the impact of long-term exposure to high-fat diet on visceral pain perception and on the levels of TLR4 and Cd11b (a microglial cell marker) protein expression in the prefrontal cortex (PFC) and hippocampus. Peripheral alterations in TLR4 were assessed following the stimulation of spleenocytes with the TLR4-agonist LPS. Finally, we evaluated the effect of blocking TLR4 on visceral nociception, by administering TAK-242, a selective TLR4-antagonist. Our results demonstrated that exposure to high-fat diet induced visceral hypersensitivity. In parallel, enhanced TLR4 expression and microglia activation were found in brain areas related to visceral pain, the PFC and the hippocampus. Likewise, peripheral TLR4 activity was increased following long-term exposure to high-fat diet, resulting in an increased level of pro-inflammatory cytokines. Finally, TLR4 blockage counteracted the hyperalgesic phenotype present in mice fed on high-fat diet. Our data reveal a role for TLR4 in visceral pain modulation in a model of diet-induced obesity, and point to TLR4 as a potential therapeutic target for the development of drugs to treat visceral hypersensitivity present in pathologies associated to fat diet consumption

    Microbiota regulates visceral pain in the mouse

    Get PDF
    The perception of visceral pain is a complex process involving the spinal cord and higher order brain structures. Increasing evidence implicates the gut microbiota as a key regulator of brain and behavior, yet it remains to be determined if gut bacteria play a role in visceral sensitivity. We used germ-free mice (GF) to assess visceral sensitivity, spinal cord gene expression and pain-related brain structures. GF mice displayed visceral hypersensitivity accompanied by increases in Toll-like receptor and cytokine gene expression in the spinal cord, which were normalized by postnatal colonization with microbiota from conventionally colonized (CC). In GF mice, the volumes of the anterior cingulate cortex (ACC) and periaqueductal grey, areas involved in pain processing, were decreased and enlarged, respectively, and dendritic changes in the ACC were evident. These findings indicate that the gut microbiota is required for the normal visceral pain sensation
    • …
    corecore