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Abstract Designing and implementing natural resource
monitoring is a challenging endeavor undertaken by
many agencies, NGOs, and citizen groups worldwide.
Yet many monitoring programs fail to deliver useful
information for a variety of administrative (staffing,
documentation, and funding) or technical (sampling
design and data analysis) reasons. Programs risk failure
if they lack a clear motivating problem or question,
explicit objectives linked to this problem or question,
and a comprehensive conceptual model of the system
under study. Designers must consider what Bsuccess^
looks like from a resource management perspective,
how desired outcomes translate to appropriate attributes
to monitor, and how they will be measured. All such

efforts should be filtered through the question BWhy is
this important?^ Failing to address these considerations
will produce a program that fails to deliver the desired
information. We addressed these issues through creation
of a Broad map^ for designing and implementing a
monitoring program, synthesizing multiple aspects of a
monitoring program into a single, overarching frame-
work. The road map emphasizes linkages among core
decisions to ensure alignment of all components, from
problem framing through technical details of data col-
lection and analysis, to program administration. Follow-
ing this framework will help avoid common pitfalls,
keep projects on track and budgets realistic, and aid in
program evaluations. The road map has proved useful
for monitoring by individuals and teams, those planning
new monitoring, and those reviewing existing monitor-
ing and for staff with a wide range of technical and
scientific skills.

Keywords Monitoring design . Effectiveness
monitoring . Status and trendsmonitoring . Adaptive
management . Inventory . Structured decisionmaking

Introduction

Long-termmonitoring of natural resources is of growing
importance (Janetos and Kenney 2015), especially at
larger spatial scales (e.g., Beever and Woodward 2011;
Christensen et al. 2013; Gannon et al. 2013; Kenney and
Janetos 2014; Isaak et al. 2015; Janetos and Kenney
2015). Yet, despite the growing demand for data
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collected consistently across space and time, too often,
monitoring efforts fail (Field et al. 2007; Reynolds
2012). The literature is rich with monitoring guidance
and lessons learned that highlight the diverse sources of
failure—from poorly defined objectives (e.g., Silsbee
and Peterson 1993; Lindenmayer and Likens 2010b),
poor selection of indicators (Hinds 1984; Olsen et al.
1999; Irvine et al. 2015), inadequate survey design or
statistical power/survey effort (Taylor et al. 2007;
Reynolds 2012), or the more complex organizational
issues that arise in sustaining program consistency
across timescales of a decade or more (Lindenmayer
and Likens 2010a). The literature broadly clusters into
two groups—those focused on general issues of prob-
lem framing and objective setting and those focused on
detailed guidance regarding specific technical issues
(e.g., indicator selection, survey design, and analysis).
Although well aimed and informative, neither group
covers all the requisite components required for a suc-
cessful monitoring program, let alone how the decisions
in any one component influence and/or constrain the
choices in any other component (Reynolds 2012). This
leaves those charged with developing a new monitoring
program, or sustaining an existing one, to develop their
own holistic vision of these many components and
linkages—a task requiring time and usually achieved
in hindsight.

When initiating a new monitoring program, the lack
of an overarching vision of all the necessary compo-
nents presents two fundamental barriers to success.
First, it hinders recognition of the diversity of consider-
ations and decisions required and, thus, recognition of
both the preliminary planning necessary prior to actual
data collection and the resources necessary for success.
Second, given that monitoring efforts generally require
high-functioning collaborative teams, the lack of a high-
level organizational structure hinders the clear and ef-
fective communication required to ensure that all team
members are aligned on the same goal and aware of how
their specific contribution (e.g., coordination, logistics,
statistical design and analysis, data management, com-
munications) links with others (National Research
Council 2015). Indeed, the biggest challenges that un-
dermine the success of monitoring programs are cultural
and organizational (Field et al. 2007). Successful mon-
itoring requires strong collaboration among managers,
ecologists, and data scientists that is hindered by orga-
nizational boundaries, funding cycles that are too short,
and the common practice of allowing data to pile up

without rigorous analyses that would inform improve-
ments in monitoring methods.

We have addressed these challenges by creating a
ten-step Broad map^ for designing and implementing a
biological monitoring program (Fig. 1). The road map
provides a high-level overview of the full monitoring
process: from framing the problem and defining objec-
tives, to deciding if monitoring is even required, to the
technical details of survey design and data management,
to the administrative elements required to ensure pro-
gram learning and improvement. In addition to provid-
ing for more effective communication, collaboration,
and team alignment, the graphical synthesis can be used
for benchmarking to ensure that projects remain on track
and resources are scheduled and available.

The road map can be seen as an extension of earlier
graphical efforts (Hinds 1984; Silsbee and Peterson
1993; Elzinga et al. 2001; Lindenmayer and Likens
2009; Lindenmayer and Likens 2010a) and a synthesis
of earlier design principles, both general (Silsbee and
Peterson 1993; Wissmar 1993; Maher et al. 1994;
Elzinga et al. 2001; Lindenmayer and Likens 2010b;
Lindenmayer and Likens 2010a) and technical (Olsen
et al. 1999; McDonald 2003; Taylor et al. 2007;
Reynolds 2012). It is more comprehensive and prescrip-
tive than these earlier efforts in emphasizing linkages
among the myriad planning decisions, as well as, in the
accompanying narrative, providing guidance on specific
methods, tools, or resources that we have found to be
most effective for each step. The road map’s philosophy
is aligned with the adaptive monitoring approach es-
poused by Lindenmayer and Likens (2009) though it is
somewhat broader in the inclusion of specific guidance
for deciding if monitoring is even required (step 5) and,
if so, what type of monitoring.

In 1993, this journal devoted a special issue to papers
from a workshop on BImproving Natural Resource
Management through Monitoring.^ The opening edito-
rial commented that B(a)lthough most of the concepts
may seem self-evident, they are widely applicable and
should be explicitly incorporated into the planning and
implementation of any…monitoring program^ (Stafford
1993) (pg. 87). Almost 25 years on, the literature dem-
onstrates that when it comes to the complex challenges
of long-term natural resource monitoring, these Bself-
evident^ concepts continue to be so mainly in hindsight
and are still not widely recognized and adopted. Our
objective in creating the road map is to help change that
situation over the next 25 years.
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A road map for designing and implementing
a biological monitoring program

The ten-step road map for designing and implementing
a monitoring program has four general phases (Fig. 1):

1. Frame the problem, clarify the objectives, develop a
conceptual model of the system, and identify possi-
ble management actions

2. Design the monitoring, including the data collec-
tion, analysis, and data management components.
This entails first deciding whether or not monitoring
is even required

3. Implement the monitoring and learn from the data;
inform decision making

4. Learn to improve the monitoring process; incorpo-
rate new tools and system information; and revise
objectives, design, and methods, as appropriate

1. Define problem or question
Document all steps

2. State objectives

4.  Specify management or policy action(s) or
confirm none planned

3. Sketch a conceptual model of the system
Describe the basic components, system drivers, and stressors

Existing 
knowledge
or models

1. FRAME THE
PROBLEM

Revisit

5. Decide on Approach
Are there identified management actions to decide among?
Is the time horizon for the decision well-defined and finite?

Inventory,
assessment, or
research study

6.  Translate the conceptual model from Step 3 into quantitative form

2. DESIGN

9.  Analyze data & report results

3. IMPLEMENT
&

LEARN 4. LEARN
&

REVISE

Repeat Steps 8-10

8.  Collect and manage data

10.  Update models, assess, or plan and implement actions, when relevant

7.  Design the survey, the analytic approach, and the data management system
Write protocols

Short-term,
don't monitor

Long-term, monitor

5A.  Monitor to understand
the system.  No action.

(status and trends
monitoring)

5B. Monitor to decide
when to act.  No initial

action. (threshold
monitoring)

5C.  Monitor to assess
outcomes of action(s). 

(effectiveness
monitoring)

5D. Monitor to assess
outcomes of multiple

actions in explicit

informing next action.
(adaptive management)

Document 
all steps

What attributes and covariates should be measured?

framework for 

Fig. 1 The road map for designing and implementing monitoring
has ten steps sequenced in four general phases—Bframe the
problem,^ Bdesign,^ Bimplement and learn,^ and Blearn and
revise.^ Key times for iteration back through earlier steps are

denoted by the return arrows emerging from step 4, step 10, and
phase 4 learn and revise. Decisions made at each step should be
recorded in the project record (Appendix)
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We review each phase of the road map, briefly de-
scribing the core goals, actions, and products. We use a
simple example of sustaining a moose population to
illustrate the steps. The more technical aspects of mon-
itoring, by necessity, are described only superficially;
our focus is providing guidance on overall program
planning and design to maximize value in support of
policy or management decision making.

Phase 1—frame the problem

Steps 1–4 of the road map (Fig. 1) follow a structured
decision making process (Lyons et al. 2008; Gregory et
al. 2012) and include key tools useful in decomposing a
problem to determine the appropriate approach.

Step 1: define the problem or question

A management problem or question motivates the need
for information about the system. A robust problem
definition should answer BWhy is this an important
problem or question?^ and address the following: the
temporal and geographic scope of the problem; who has
the authority to make decisions that could resolve or
address the problem; the legal, financial, or political
constraints that the decision makers are working under;
what information about the resource is needed to im-
prove the decisionmaking; andwho are the stakeholders
that will be interested in and/or impacted by the deci-
sion. It is not uncommon for monitoring data to have
proximate value to the planning team and stakeholders,
as well as long-term value to future decision or policy
makers and the conservation science community. A
good understanding of multiple information needs and
pathways to influence decision making should be con-
sidered in this step. This Binformation need^ is what the
monitoring effort aims to address (Reynolds 2012).

In resource management agencies, it is often difficult
to discern exactly what the problem is, especially if
several people or stakeholders need to arrive at a com-
mon understanding. Indeed, problem definition is often
skipped in favor of immediately focusing on what to
monitor. However, problem definition is required to
place monitoring within the relevant management con-
text. Even when the focus is simply the Bstatus and
trend^ of a resource, there is an unstated expectation
that someone will endeavor to achieve or maintain a
desirable state or reverse an undesirable trend. Who has
that responsibility and authority? This person, office, or

agency will be reading the reports and using the infor-
mation to guide decisions. They need to be involved in
the planning, so they can clarify their information needs,
including specifying the desired precision and quality of
information, the timing and format of reporting, and
better understand what information is feasible to obtain
(Averill et al. 2010). A workshop provides a positive
setting for the focused, cross-disciplinary dialogues usu-
ally required to clarify these information needs. This is
the foundational step of the monitoring design process
because it clarifies the underlying goal of the monitor-
ing; failing to specify the problem is like building a
house on a weak foundation.

Step 2: state the objectives

Once the problem is defined, one needs to articulate the
objectives. Objectives often relate to a desired future
condition of a resource, although they sometimes entail
simply understanding the current condition (Keeney
1992; Yoccoz et al. 2001). In the former case, a manager
may want to restore ecological integrity to a degraded
system or ensure certain levels of ecosystem services.

There are two types of objectives: fundamental and
means. Fundamental objectives are the core outcomes
that one cares about Bjust because^ and represent some-
thing to strive for to achieve the organization’s mission.
A good fundamental objective is the Bbroadest objective
that will be directly influenced by the [decision] alter-
natives and within the control of the decision maker^
(Gregory et al. 2012, p. 74). In natural resources man-
agement, fundamental objectives usually represent a
healthy ecosystem, habitat, or population. Means objec-
tives contribute to achievement of the fundamental ob-
jectives by defining a particular way of achieving the
fundamental objective. For example, given a fundamen-
tal objective of Bprevent an endangered bird species
from going extinct,^ an associated means objective
might be to Bincrease reproductive success.^ The rela-
tionships between the fundamental and means objec-
tives can be depicted graphically by an objective hierar-
chy; Fig. 2 illustrates an objective hierarchy for a fun-
damental objective of sustaining a moose population.

Step 2 involves clarifying the fundamental and
means objectives and sketching the objective hierarchy.
In step 6 (Fig. 1), we will return to the objective hierar-
chy to step down each means objective into system
characteristics (Battributes^) that can be measured to
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assess achievement of the means objective—these are
already shown in Fig. 2.

Step 3: sketch a conceptual model of the system

Given an identified problem and objectives, developing
a conceptual model (step 3) provides an essential per-
spective (Fancy et al. 2009; Margoluis et al. 2009) by
showing key system components, including threats
(Salafsky et al. 2008), human activities or interventions,
and their relationships to the fundamental objective. The
conceptual model of the system is the intellectual foun-
dation upon which a monitoring program rests, as it
makes explicit the connection between system drivers
(including management actions) and the fundamental
objectives, thus helping clarify exactly what should be
monitored (Ogden et al. 2005; Woodward and Beever
2011). Existing information about the system informs
the conceptual model; current knowledge of the litera-
ture is essential for building a useful conceptual model.

Figure 3 illustrates one type of conceptual model, an
influence diagram, for the moose population example.
Geometric shapes visually distinguish the fundamental
objectives, important system components or drivers, and
management actions and show the connections between
each. The initial version of the influence diagram is
often complex and, with iteration, will be refined and
simplified. An influence diagram can provide insights
about how the system functions and should include

drivers impacting the fundamental objective, possible
management actions (including policy decisions) that
could reduce the negative impacts of drivers (Bthreats^)
and/or promote achievement of the fundamental objec-
tive, and external factors that need to be accounted for in
design and analysis of monitoring (Margoluis et al.
2009; Gregory et al. 2012). For example, predator con-
trol used to managemoose populations is a controversial
management action. The influence diagram should in-
clude both the intervening external factors that may
moderate the impact of predator control as well as other
possible management actions (harvest regulations, hab-
itat enhancement) that may similarly increase moose
populations, thus providing other management alterna-
tives. Ideally, the influence diagram becomes the basis
for future process or quantitative models (step 6)
(Conroy and Peterson 2013). Utility nodes can be added
to the influence diagram to incorporate explicitly the
Bvalue,^ positive or negative, associated with different
actions and outcomes (Conroy and Peterson 2013).

Conceptual models are also useful for clarifying the
four main types of uncertainties associated with man-
agement decision making (Nichols et al. 2011). These
uncertainties are as follows: environmental variation—
inherent stochastic variation in environmental factors;
partial controllability—imprecise application of man-
agement actions; partial observability—imprecise mea-
surement of the system; and structural uncertainty—
lack of understanding about relationships between

Sustain moose 
popula�on

Maximize 
reproduc�on

Produc�vity

>0.5 Calves / Cow

Maintain total 
popula�on

Popula�on size

>1,000 +/- 300 
animals

Change in 
popula�on size over 

�me

<5% decline in 
popula�on / yr

Fundamental Objec�ve

Means Objec�ves

A�ributes

Targets

Fig. 2 The objective hierarchy for the moose example, illustrating
the relationships among the fundamental objective (BSustain
moose population^), means objectives (e.g., BMaximize
reproduction^), attributes (i.e., the characteristics of the system
that are of interest, such as BProductivity,^ see BStep 6: translate
the conceptual model from step 3 into quantitative form^ section),
and targets and thresholds based on the measurements selected for

each attribute (e.g., B>0.5 calves/cow^). The objective hierarchy is
developed and refined during steps 2 and 6. The moose example
involves annual decisions and, based on the objective hierarchy,
requires annual surveys in each of the five management units to
estimate productivity attributes of the moose population in each
unit and overall population size and trends
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system state and drivers, e.g., uncertainty in defining the
model itself. Knowing the major uncertainties that ad-
versely affect decision making allows one to design the
monitoring program to control and/or reduce each of
them, as feasible (Yoccoz et al. 2001; Regan et al. 2002;
Kendall and Moore 2012). Referring to Fig. 3, extreme
weather is associated with environmental variation; par-
tial controllability may be associated with both predator
control and vaccination (impossible to vaccinate all
animals or control certain wolf packs) and should be
considered in defining any related actions. Partial ob-
servability will be a factor in all observations made of
the system and should be accounted for in the design
and measurement process. Structural uncertainty can be
addressed through careful design of the monitoring ap-
proach (step 5) if its reduction is identified as a means
objective.

Step 4: specify management or policy actions
or confirm none planned

Are the decision makers and stakeholders considering
potentially implementing specific management or poli-
cy actions to resolve or address the problem? To avoid
confusion, we reserve the term Baction^ to mean man-
agement activities intended to relatively directly reduce
a threat or otherwise improve the state of the system

under management; we do not consider as an action
Bimplementing a procedure to inform or assess the ef-
fects of management actions, e.g., starting a monitoring
program.^ Examples of actions include habitat manipu-
lations, regulations and restrictions, policies, funding
decisions (including funding research to reduce struc-
tural uncertainty regarding how the system will respond
to specific actions), administrative adjustments, and
Bdoing nothing.^ Brainstorming a wide range of poten-
tial actions with limited censorship will encourage novel
ideas to emerge (De Bono 1989), only then begin filter-
ing the suite of potential actions by considering logis-
tics, legality, political palatability, resources, and time. If
there are no potential actions being considered, go to
step 5; otherwise, continue in step 4 clarifying the
actions.

For each action remaining under consideration, use
the conceptual model from step 3 to develop a Bresults
chain^ (Margoluis et al. 2013)—a path through the
influence diagram specifying a sequence of cause-and-
effect relationships that begin with the action, possibly
run through a series of intermediate impacts, and end
with a means objective that the action is expected to
impact. The results chain summarizes how the system is
expected to change if the action is implemented and thus
encapsulates your Btheory of change^ (Margoluis et al.
2013) For the moose population example, one results

Fig. 3 The influence diagram, developed in step 3, is a conceptual
model that illustrates the Bbig picture^ associated with a problem
and indicates where decisions or actions could be applied and their
assumed pathways of influence. This diagram depicts factors and
actions that can potentially affect the fundamental objective (dia-
mond) of sustaining the moose population in the example.

Contributing factors (rounded rectangles) include things that
may respond to management actions (habitat quantity and quality,
disease, predator populations) as well as factors that are largely
outside the manager’s control (extreme weather). Rectangles de-
note potential management actions
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chain is as follows: Vaccinate herd for brucellosis in fall
→ decrease incidence of disease→ increase male over-
winter survival and maternal health→ improve produc-
tivity per female → increase net productivity of popu-
lation. By clarifying the path of influence for a specific
action, a results chain may suggest additional, interme-
diate system characteristics worth measuring to track
effectiveness and identify where your system under-
standing may be breaking down (step 6), perhaps due
to structural uncertainty; it may reveal intervening fac-
tors that need to be considered or perhaps even con-
trolled, and it can aid in the development of quantitative
models describing system dynamics (step 6). At the end
of this process, update the conceptual model if
necessary.

In clarifying the details of each action, including the
associated results chain, be sure to specify operational
details such as the following: (i) Is it a one-time action or
will it be repeated? If repeated, how often? (ii) When
should the action be applied? (iii) Are multiple actions
possible at a given point in time? (iv) How quickly is the
system is expected to respond to the action? Is there
likely to be a long lag time? (v) How much control is
there over implementing the action? Is there large un-
certainty (e.g., partial controllability)? (vi) How much
will it cost to implement the action?

Often, management actions can be grouped together
into portfolios (Doremus 2003; Blomquist et al. 2010),
e.g., sets of actions that can be implemented together.
The conceptual model for the moose population (Fig. 3)
shows four types of actions: control predators, set har-
vest regulations, vaccinate the herd, and manage fire.
These can be combined, mixing different implementa-
tion options for each action type into different portfolios,
e.g., varying harvest season length and bag limits.

Revisit steps 1–4 and create administrative record

Moving quickly and repeatedly through steps 1–4
(Brapid prototyping^) is an effective and efficient way
to Bframe the problem^ (Starfield et al. 1994; Blomquist
et al. 2010). In practice, each step in the process informs
both earlier and subsequent steps, leading to refinement
of the problem, objectives, alternatives, and, eventually,
the entire conceptual model of the system. The Brevisit^
arrow (Fig. 1) is a reminder to reconsider the initial steps
before proceeding to step 5; this might be done multiple
times.

When one is satisfied that steps 1–4 have been ade-
quately completed, at least for the time being, one
should create an administrative record for the project
(project record, Appendix). This documents the pro-
ject’s history and evolution, recording decisions made
during each step of the road map. Details of both deci-
sions and their rationale are easily forgotten if not doc-
umented. This can cause decisions to be revisited re-
peatedly and needlessly, impeding progress (and en-
gagement). It may take many months, perhaps even a
year or more, to fully design a monitoring program;
during the interim, people could forget how or why they
made certain decisions.

The project record provides a condensed summary of
key information from project documents such as meet-
ing notes, workshops, conference call minutes, proto-
cols, survey designs, fact sheets, lists of participants,
survey data, reports, etc. It is important to record mod-
ifications to the survey design, protocols, or manage-
ment actions. To avoid bias or confounding, these mod-
ifications must be accounted for, not only in the data
analysis, but perhaps also in future data collections. Staff
changes, even at the level of survey coordinators or
principal investigators, are inevitable in monitoring pro-
grams that span multiple years. Clear and thorough
documentation is essential if a monitoring program is
to survive staff turnover.

Phase 2—design

Once the decision context has been clearly defined and
the associated information needs have been identified,
one must decide on the best approach for obtaining the
information (step 5), in particular,whether monitoring is
even necessary. If monitoring is deemed necessary, then
one proceeds to develop the technical details for the data
collection, analyses, and data management (steps 6 and
7). The design phase involves a number of technical
decisions that will ultimately determine the effective-
ness and efficiency of the monitoring. These steps
should be undertaken in consultation with experts in
statistics and data management.

Step 5: decide on the approach

After completing steps 1 through 4, one has a clear
understanding of the motivating problem and is ready
to determine the most efficient way to obtain the needed
information. New data collection may not be necessary;
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the required information may be available in the pub-
lished literature or from analysis of existing data sets.
Using existing information is faster and more cost-
effective than monitoring. Because the published liter-
ature may contain information that has escaped the
attention of the decision makers, scientists on the team
may resolve the problem by identifying and summariz-
ing the relevant literature. In the moose example
(Fig. 3), there may be research demonstrating the effec-
tiveness, or not, of either vaccination or predator control
in controlling moose populations. The possibility that
the needed information is already known provides mo-
tivation to review the available literature and build
relationships with experts who have this knowledge.
Among a manager’s many responsibilities is the pro-
fessional responsibility to help develop best manage-
ment practices by summarizing and sharing their own
experiences and data in the appropriate published liter-
ature, thus helping others in similar situations. To facil-
itate such communications, time and money for pro-
ducing these summaries must be included in project
proposals. Simplifying the sharing of conservation
management lessons in order to improve learning by
the conservation community is a major goal of recent
efforts to develop standardized vocabularies (e.g.,
Salafsky et al. 2008) and libraries of common manage-
ment decision frameworks (e.g., Muir et al. 2014 and
the Conservation Actions and Measures library at www.
miradishare.org).

If the needed information is unavailable, it is pru-
dent to next ask Bis it worth gathering?^ before under-
taking a new investigation. Costs, including time, may
be a significant factor in decisions about what ap-
proach should be taken. Indeed, a manager must de-
cide whether the optimal decision is to invest in man-
agement rather than monitoring (Field et al. 2004).
Major considerations include the degree of uncertainty
regarding how the system will respond to the action
(due to each of the types of uncertainties mentioned
earlier, especially environmental and structural) and
the risks associated with delayed or no action. A rough
tally of monitoring costs can be developed by estimat-
ing the costs with each of the remaining steps in the
road map (Fig. 1). Formal methods of examining
tradeoffs in cost and effort involve expanding the
influence diagram to include utility nodes (Conroy
and Peterson 2013) and using the resulting decision
model to estimate the value of information that will be
gained via monitoring compared with other

information-generating approaches or with making de-
cisions in the absence of the desired information
(Runge et al. 2011).

If the relevant information is unavailable but deemed
worth acquiring, then one needs to decide how to collect
or generate the information. The decision tree shown in
Fig. 4 can help with sorting through the variety of
approaches—research, inventory, or monitoring—based
on the types of information needed, whether a manage-
ment action is planned, the timing of the action(s), the
level of uncertainty associated with the expected re-
sponse(s) to the action(s), and the time frame available
for collecting the needed information.

Research Focused research to determine the best man-
agement action may be appropriate if there are one or
more actions under consideration (e.g., vaccinating
moose), structural uncertainty is the main concern, and
the system is expected to respond to manipulations
within the time period available for managers to decide
which action to implement at actual scale (e.g., across a
whole conservation unit)—in Fig. 4, this is summarized
as having a Bwell-defined time horizon^ (especially a
short one). For example, if managers are deciding
among competing herbicide treatments to adopt for use
in reducing an invasive plant on a relatively large con-
servation unit, they may be able to conduct research,
perhaps on a small portion of the unit, for a season to
assess their effectiveness prior to deciding on which
herbicide to implement more broadly. This approach is
most effective for frameworks where there is high con-
trollability and low to moderate environmental
uncertainty.

In some cases, the effects of two or more actions can
be evaluated using designed experiments, which can
establish a causal relationship between an action and
an outcome. Well-designed experiments have two key
features: (i) treatments (e.g., actions) must be randomly
assigned to experimental units (plots, animals, trees,
etc.) and (ii) each treatment must be applied indepen-
dently to at least two units (Cox and Reid 2000). De-
signed experiments accelerate learning by controlling
for extraneous sources of variation in a systematic
way. If the problem will yield to this approach, it is
likely quicker and more cost-effective than monitoring.
Many questions involving animal behavior or contami-
nants can be answered with a series of designed exper-
iments, such as determining safe vaccine dosages for the
moose example introduced earlier.
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Alas, designed experiments are often infeasible in
natural resource contexts. Treatments may not be repeat-
able (e.g., removal of a large dam), or their spatial-
temporal extent may make application to multiple ex-
perimental units infeasible (e.g., a state-wide change in
moose harvest regulations). Often, there is inadequate
ability to consistently apply the treatment (e.g., partial
controllability), such as the imposition of size limits for
trout in a recreational fishery, or consistently assess the
outcome (e.g., partial observability), such as often holds
for actions targeted at affecting human behavior via
policy, enforcement or education (e.g., implementing
an education program to reduce the spread of invasive
aquatic species). Adaptive management approaches (de-
scribed below) were largely developed to overcome
these challenges, allowing knowledge of treatment op-
tions gained through limited-scale designed experiments
to be tested in the field under Breal^ conditions. For
example, treatment options for invasive species are of-
ten tested first in a series of greenhouse experiments,
followed by field trials, and finally under real manage-
ment conditions.

Inventory A one-time inventory or site assessment is
appropriate when there is no management action under
consideration and when the objectives can be met over a
relatively short time interval (for example, change over
time is not important). Referring to the moose manage-
ment example (Fig. 3), if little is known about the spatial
distribution, abundance, or age and sex structure of a
population, then an initial inventory of the population is
necessary.

Types of monitoring Once a decision has been made to
pursue monitoring, it is necessary to identify the most
appropriate form of monitoring. Monitoring efforts have
been classified by a diversity of criteria and terminolo-
gy: for example, passive/mandated/question-driven
sensu Lindenmayer and Likens (2010a) and targeted/
cause-and-effect/context sensu Rowland and Vojta
(2013). For the purpose of guiding design decisions,
we define four types of monitoring, differentiated by
their relationship to management action(s):

& If no specific action is being considered and the
purpose is simply characterization of the state of a
system over time, e.g., how many moose are present
in a unit over time, then status and trends monitor-
ing is appropriate (Fig. 1, box 5A).

& If the monitoring information will trigger a specific
action, e.g., burn a management unit, threshold
monitoring is appropriate (Fig. 1, box 5B).

& If timing of an action is planned and there is rela-
tively low uncertainty regarding the expected re-
sponse to the action, e.g., a moose vaccine is gener-
ally known to be adequate in field conditions, then
effectiveness monitoring is appropriate (Fig. 1, box
5C).

& If timing of an action is planned, there is medium-
high uncertainty in the expected response to the
action, and alternative actions will be formally com-
pared to better inform future decisions, e.g., a goal is
to reduce structural uncertainty as to relative effec-
tiveness of burning versus other silvicultural treat-
ments in a forest, then formal monitoring in an

Are one or 
more 

actions 
planned?

Is system 
change 

over time 
important

?

Inventory or 
site assessment

Status and 
trends 

monitoring

Is there a 
short or a 

well-de�ined 
time horizon?

Focused 
research

Is  timing of  
the action(s) 

planned? 

Is there 
medium to high 

uncertainty 
about the 
expected 

response (s) to 
the action(s)?

Effectiveness 

monitoring

Monitoring 
under Adaptive 

Management

Threshold 
monitoring

Fig. 4 The type of monitoring required (step 5) can be decided by
clarifying whether there are any specific management actions
under consideration, the amount of time available for making
decisions regarding actions (Btime horizon^), the timing of
planned actions, and the relative magnitude of uncertainty regard-
ing how the systemwill respond to the action(s).When appropriate

and feasible, focused research is likely to be faster and less costly
than monitoring. Adaptive management is only possible when
there are iterative decisions, e.g., repeated decisions of the same
kind are made over time or across space (see text of BStep 5: decide
on the approach^ section for further details)
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adaptive management framework is appropriate
(Fig. 1, box 5D).

The four types of monitoring distinguish manage-
ment information needs and contexts, and the intent to
employ one or the other affects design decisions, as we
describe in step 7. Although all four focus on uncertain-
ty regarding the state of the system, two focus on system
state without or before an action (status and trends and
threshold monitoring) and two focus on the system’s
response to action (effectiveness monitoring and adap-
tive management). Taken together, the number of ac-
tions (if any), the timing of the actions, and the degree of
structural uncertainty (which influences the framework
for informing future decision making) define the type of
monitoring or study that should be designed (Fig. 4).

Status and trends The defining characteristic of status
and trends monitoring [sometimes called baseline, sur-
veillance, or passive monitoring (Lindenmayer and
Likens 2010a)] is its focus on the state of the system,
independent of any management actions (Morton et al.
2008). The purpose is to estimate the status and trend of
some component of the system (Fancy and Bennetts
2012), often because a threat to the system is anticipated
and monitoring is required to establish current condi-
tions (Bbaseline^), including natural ranges of variabil-
ity, or to detect a change. For example, concerns over
how climate change may affect the moose population
might motivate monitoring to track population abun-
dance or spatial distribution. Sometimes, legislation
mandates monitoring [regulatory monitoring
(Lindenmayer and Likens 2010a)]. Even in these con-
texts, a conceptual model of the system is essential to
guide the selection of the appropriate measurements.

There are several problems with status and trends
monitoring (Nichols and Williams 2006). First, there is
typically no clear timeline or milestone to prompt as-
sessment, revision, or termination of the monitoring.
Second, maintaining the monitoring long-term is chal-
lenging when no one directly relies on the products of
the monitoring for decisionmaking. Focusing on system
state independent of any management decisions can
make it difficult to find committed champions who will
support the program during times of lean budgets and
staff reductions [though see the successful approach of
the US Forest Service’s Forest Inventory and Health
Assessment program (Woodall et al. 2011)]. Third,
without a decision maker demanding information in a

timely manner, data management, analysis, and
reporting (steps 9–10) may be delayed or neglected.
Problems with survey design can persist undetected
and unresolved, wasting resources, and, potentially, fail-
ing to detect degradation of the natural resources being
monitored (Reynolds et al. 2011). Fourth, the informa-
tion from this type of monitoring can be difficult to
interpret if the major drivers of change are not also
measured. Long-term status and trend information may
be of general interest but often lacks specificity in terms
of providing guidance for action, since management
was not incorporated into the survey design. For exam-
ple, if a species has declined to a point where some
management intervention is required, long-term base-
line monitoring may indicate that urgent action is need-
ed but not which action(s) will be most effective. Spe-
cies declines simply trigger further study in the form of
research to determine causes of the decline and possible
treatments.

Threshold monitoring If specific actions are anticipated,
monitoring can be designed to efficiently inform the
decision to act. The addition of a decision context might
call for management response when the system state
reaches a pre-defined threshold (Martin et al. 2009;
Rogers et al. 2013). Threshold monitoring is often used
for management of processes with known directionality,
such as plant succession, timber stand improvement, or
deterioration of roads or trails by erosion or high visitor
use. For example, when the cover of woody species in a
grassland unit reaches a specified level, a manager with
the objective of maintaining the grassland will initiate
some disturbance (fire, grazing, mowing) to set back
succession and reduce the dominance of woody species.
This type of monitoring is appropriate when the system
response to the planned action is already well
established and known with great certainty.

Effectiveness monitoring Once the decision to act has
been made, managers, funders, and/or other stake-
holders should want to learn the action’s consequences
(e.g., Margoluis et al. 2013). This applies even if struc-
tural uncertainty is low, especially when there is large
environmental uncertainty influencing the system re-
sponse. In its most basic form, effectiveness monitoring
involves documenting system response and noting the
degree to which the desired outcome was attained. For
example, effectiveness monitoring might be conducted
to assess the effect of a change in harvest regulations on
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moose population size. Note that the term Beffectiveness
monitoring^ occurs in a variety of contexts besides
resource management and conservation delivery; re-
gardless of context, the intent is to assess how well a
desired outcome was attained.

The resulting information can be used to trigger
continued action (e.g., BWas the density of trees reduced
enough or is more action required?^) and improve pre-
diction of system response to future actions (Parrish et
al. 2003). However, if the focus is predominantly on
reducing such structural uncertainty, the information
needs may be resolved more quickly via literature re-
view or research (Fig. 4). If enough documented reports
of outcomes from previous actions are available, a meta-
analysis may be possible to help identify best manage-
ment practices (Roscoe and Hinch 2010).

When there is medium to high uncertainty regarding
how the system will respond to the actions (e.g., pred-
ator control), effectiveness monitoring may not be very
informative if monitoring is restricted to just the targeted
means objectives (e.g., moose abundance) (Allen et al.
2011). In such cases, if the desired outcome is not
attained, subsequent actions are reactive and often ad
hoc, requiring a return to phase 1 (frame the problem) to
identify alternative strategies and competing system
models. This is avoided by spending adequate time in
step 4, Specify management or policy actions or confirm
none planned, thoroughly developing the results chain
associated with each potential action and identifying
appropriate intermediate system characteristics to mon-
itor (e.g., moose calf and female survival), in addition to
the targeted means objectives, to identify any break-
downs in the conceptual model of the system (see
Margoluis et al. 2013).

Adaptive management Adaptive management is a for-
mal framework for iterative decision making in the face
of large uncertainty regarding how a system will re-
spond to a set of potential actions. It uses a quantitative
Blearning process^ to combine (i) effectiveness moni-
toring and (ii) a suite of predictive models quantifying
the expected outcomes from each potential action (see
step 6) to distinguish actions that move the system in the
desired direction from those that have no or negative
effect (Allen et al. 2011; Williams 2011). The approach
can generate timely information about which manage-
ment options work under which conditions (Knutson
et al. 2010; Gannon et al. 2013), providing guidance
on the optimal action given current system state. While

more frequent replication of management actions (in
space or time) leads to faster reduction of structural
uncertainty regarding system response (Williams et al.
2009), the rate of learning also strongly depends on the
system response time and environmental uncertainty.
Adaptive management uses monitoring both to reduce
uncertainty in system state and to reduce uncertainty in
expected response to management actions. In the moose
example (Fig. 3), the level of uncertainty associatedwith
responses of this species to alternative forms of harvest
regulations indicates that an adaptive management
framework would likely be the most efficient approach
to increase learning and, thus, better inform decision
making.

Adaptive management contrasts outcomes from dif-
ferent actions and thus is only appropriate in settings
with multiple pre-determined management actions; it is
most effective in settings where managers face many of
the uncertainties described in step 3—structural, envi-
ronmental, partial controllability, etc. (Gregory et al.
2006; Walters 2007; Williams et al. 2009; Allen and
Gunderson 2011). It is best suited to differentiating
among broad categories of actions rather than among
actions that differ in only small details (Moore et al.
2011), for which designed experiments work better.

Note that if structural and environmental uncertainty
are the major concerns, monitoring under adaptive man-
agement should, ideally, lead to learning, allowing an
eventual shift to effectiveness monitoring (as Bwhich
action under which condition^ is resolved) and, perhaps
eventually, just threshold monitoring (as structural un-
certainty is adequately resolved).

Having identified the appropriate type of monitoring,
it is time to move on to designing the technical details.

Step 6: translate the conceptual model from step 3
into quantitative form

The conceptual model and results chains formulated in
steps 3–4 serve as the basis for developing a quantitative
model or models (Irvine et al. 2015). The quantitative
model(s), in turn, provides predictions regarding how
the system will change in response to specific stressors
or management actions. Model specification leads to
consideration of the statistical methods that will be used
to analyze the data and inform the design of the data
collection (Reynolds 2012). Thinking through the
models, analyses, and design consequences ahead of
data collection speeds the rate of learning.
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The degree of sophistication of the model(s) should
be dictated by its intended uses and may require assis-
tance from technical experts during development.
Models should capture the key elements of a complex
system or decision problem (Starfield 1997; Conroy and
Peterson 2013). A quantitative model allows low-cost
exploration of Bwhat if^ scenarios in which model in-
puts can be changed and model outputs examined. This
is a powerful tool for designing monitoring but is rarely
used in our experience.

Step 6a. What attributes are of interest and how should
they be measured? The objective hierarchy, initially
sketched in step 2, and the results chains developed in
step 4 can be used to explore and select the characteris-
tics, or attributes, of the system that will be monitored.
Biodiversity, abundance, survival, growth rate, habitat
quality, and harvest rate are all system attributes that a
monitoring program might seek to quantify. Returning
to the moose example (Fig. 2), the fundamental objec-
tive can be stepped down to attributes that reflect suc-
cess, such as productivity and population size. To help
choose attributes, one can ask the question, BIf I were
fully successful in achieving my objectives, what would
it look like? Conversely, if I failed to achieve my objec-
tives, what would that look like?^ Alternatively, when
objectives lack specificity, one might ask, BIn what ways
do I expect the system to change from the way that it is
currently?^ Answering this question might lead to re-
vised, more sharply defined objectives.

An ideal attribute responds directly to the possible
actions (lagged and indirect effects are more difficult to
interpret) and is not sensitive to other system compo-
nents that are highly variable, out of management con-
trol, or difficult to measure. The ideal attribute should
also be simple and easy to measure. Unfortunately, ideal
attributes often do not exist and proxies are used instead;
e.g., fish health may be of primary interest, but weight
and length are more easily measured, and a condition
index, weight divided by length, is calculated (see Olsen
et al. (1999) for further discussion on this topic). It may
take several iterations to get the fundamental and means
objectives aligned with attributes that are feasible to
measure, given program resources (Irvine et al. 2015).
It is important to recognize when it is not feasible to
measure the necessary attributes with the required pre-
cision given existing resources (Reynolds et al. 2011;
Reynolds 2012); this is an especially important Breality
check^ once data become available.

We explicitly distinguish attributes from their physi-
cal measurement. When defining the measurement pro-
cess (sometimes called the Bresponse design^ in the
statistical literature) that will be employed, it is useful
to consider three questions: How will the attribute be
measured? What measurement scale is appropriate?
What objects or individuals will be measured?

How will the attribute be measured? Attributes that are
commonly measured in natural resource contexts—e.g.,
body condition, habitat quality, biodiversity, abundance,
and survival—can often be measured in many different
ways. For example, plant abundance might be quanti-
fied by counting stems, visually estimating percent cov-
er, or weighing harvested biomass and growth rate by
recording change in height or diameter. As noted above,
fish health could be measured as length-adjusted weight
or, alternatively, by a visual inspection and classification
as good, fair, or poor condition. In the moose example
(Fig. 2), productivity is logically measured as the num-
ber of calves produced annually per cow, but the time
post-calving when the count is taken also must be de-
fined as part of how the attribute is measured.

What measurement scale is appropriate? The scale of
measurement determines the statistical methods that can
be used to analyze monitoring data and runs from cate-
gorical through ordinal and interval to ratio [see Sparks-
Jackson and Silverman (2010) for a detailed description
of these measurement scales.] Measurements Bhigher^
on the scale are more amenable to quantitative analyses,
but often more prone to measurement errors and other
problems. For example, in the field, it is generally easier,
but less informative, to classify abundance as none-low-
high (ordinal) than to count individuals (ratio).

What object will be measured? The object, individual,
or Bthing^ to be selected and measured must also be
considered. In statistical terminology, this thing is the
sampling unit (caution: do not confuse this use of Bunit^
with the unit of measurement, such as m, s, or °F.) In
some cases, the sampling unit is a well-defined, natural
object, such as an animal, tree, pond, nest, etc. More
often, the sampling unit is arbitrarily defined, e.g., a
transect, plot, core, net haul, etc. If sampling units do
not have natural boundaries, one must choose the size,
shape, depth, duration, or other relevant characteristics.
There are a number of useful references that describe
factors to consider when defining a sampling unit for
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measurement (Elzinga et al. 2001; Keeney and Gregory
2005).

Choice of measurement is critical, affecting the cost
of the monitoring program, skills required of observers,
the sampling designs one might employ, the analytical
methods that are appropriate, and, ultimately, learning.
In addition to considering the possible field and analyt-
ical methods available and their cost, it is worth thinking
about three properties that will affect the usefulness of
the measure.

First, how repeatable or variable is the measurement?
Variability that results from the planned actions or other
system components of interest is good, but uncontrolled
variability and low repeatability will make learning
difficult. For example, siphon pumps are used to catch
aquatic micro zooplankton. Counting the numbers of
each species requires considerable expertise; measure-
ment errors are common. Moose may be counted via
transects conducted by air; significant training is re-
quired to ensure repeatable counts among observers.

Second, could the measurement be biased? If so, can
the bias be controlled or measured and adjusted for?
One common form of bias results from imperfect detec-
tion, when organisms are missed by observers. If detec-
tion varies by habitat, condition, density, or observer,
patterns in the data may reflect detection effects, which
may obscure actual changes that monitoring is designed
to track. Moose counted via aerial surveys are expected
to be more detectable in open habitats compared with
dense forests. Data collection can be designed to accom-
modate estimation of detection probabilities
(MacKenzie et al. 2006).

Finally, is the measurement likely to produce a large
number of zero values? Zeroes are common when mea-
suring abundance in natural communities, e.g., secretive
marsh birds. Zeros may represent a true absence or
detection problems at low abundance (Martin et al.
2005). The second case is more problematic, but, in
either case, a high prevalence of zeroes can complicate
statistical analyses and data interpretation. Recognizing
these complications early can lead to changes in sam-
pling designs, analytical methods, or the selection of
alternative attributes or measurements.

Step 6b. Modeling system change over time Given the
conceptual model formed in step 3, the anticipated
actions from step 4, and some idea of the relevant
attributes and measures, a quantitative model that
describes both the natural system and the effect of

management actions, if any, can be formulated. In
general, it is better to start with a simple model and
add complexity only as needed to resolve the problem
or question rather than beginning with a complex model
and trying to simplify (Starfield 1997). The initial
model, based on the influence diagram (Fig. 3), should
link key ecosystem drivers, anthropogenic drivers, or
management decisions to desired outcomes. Various
authors have addressed the problem of model formula-
tion for fish and wildlife systems (Starfield et al. 1994;
Hilborn and Mangel 1997). For the sake of brevity, we
focus here on some relatively simple quantitative
models with reference to the four types of monitoring
identified previously (Table 1).

Quantitative models when monitoring without or before
management action The primary role of a model in both
status and trends and threshold monitoring is to summa-
rize relationships among the major drivers of the system
and the fundamental objectives, as represented by the
attribute(s) of interest. Thesemodels may use time as the
sole predictor of system response (Table 1(A)), may
include covariate attributes that predict the attribute(s)
of interest (Table 1(B)), or may include lagged variables
(Table 1(C)).

Although the simple linear trend model provides a
description of the past (Table 1(A)), it provides no
insight into what caused the trend. If the unexplained
changes in the response (εt in Table 1) are large relative
to the trend, it will take a long time to detect the trend.
An alternative model postulates that the response being
measured is changing as a function of another attribute
(Table 1(B), where the factor xt for the moose example is
a measure of hunting pressure). A more complicated
model recognizes that 1 year’s value may well be related
to that of previous years (Table 1(C)).

The models can become increasingly complex. For
example, the response of multiple attributes could be
modeled simultaneously, including relationships and
interactions between them. Although statistical methods
allow for such complex models of associations among
system attributes, these models are limited in the insight
that they provide into the causal relationships [though
see Grace (2006) for an approach that accounts for our
scientific understanding of direct and indirect relation-
ships among attributes]. Another drawback of complex
models is that the data requirements are usually higher
than for simpler models; i.e., more attributes need to be
measured.
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When planning threshold monitoring, it is impor-
tant to establish the threshold value or management
trigger of the measured attribute in step 6, if not
before. The basis for selecting the threshold should
be documented, and the statistical methods that will
be used to establish that the threshold has been
crossed should be considered along with model for-
mulation (Guttorp 2006).

Quantitative models when monitoring to evaluate man-
agement actions Effectiveness monitoring and adaptive
management focus on reducing the uncertainty sur-
rounding system response to management actions. Un-
like the quantitative models for monitoring without
action, these models include a predictor variable that
indicates when a new management action was imple-
mented (e.g., Table 1(D) models a Bstep change^ or
constant shift in the system state as a result of action)
and possibly reflects a measurement associated with the
action (e.g., Table 1(E), where management action is
quantified by the amount of acreage off-limits to
hunting).

Quantitative models are central to the adaptive man-
agement framework, first encapsulating the system re-
sponse expected as a result of potential management
actions and then summarizing the observed response
into rules guiding the next round of decisions (Kendall
2001; Lyons et al. 2008). These rules are often reflected
in Bmodel weights^ assigned to each of a set of compet-
ing models describing system response. Weights are
updated as monitoring data accumulate under different
management actions, providing the quantitative learning
process at the heart of the framework and thus reflecting
the reduction in structural uncertainty.

Step 7: design the survey, the analytic approach,
and the data management system

Having defined the required measurements and the
quantitative model intended for synthesizing the data
that are collected, it is time to design the details of the
data collection, analysis, and data management compo-
nents. These three components are very closely related,
as the survey design will be informed by the intended
data analyses and will, in turn, constrain any other
supplemental analyses. For example, the best survey
designs for assessing trends are usually quite different
from the best survey designs for fitting a model to
specify current relationships among a variety of attri-
butes (McDonald 2012). Working out these technical
details often entails collaboration with specialists in
each component.

Step 7a. Design the survey Survey design entails spec-
ifying where, when, and how to measure, given the
available resources. This step will nearly always benefit
from consulting a statistician or sampling design expert.
Survey design is informed by a wealth of statistical
research, and it is difficult for monitoring practitioners,
who undertake design relatively infrequently, to gain or
maintain this expertise. Many resources provide guid-
ance on these topics (Elzinga et al. 2001; Thompson
2004; Schaeffer et al. 2011; Thompson et al. 2011;
Reynolds 2012; Thompson 2012). The challenge for
the practitioner is to know what guidance is best applied
to their particular problem. A statistician familiar with
natural resources problems and sampling design appli-
cations can guide the practitioner to the right resources,
evaluate proposed sampling designs, and assist in

Table 1 Simple models for estimating attribute changes over time and in response to management

Model description Model formulation

A. Simple linear trend:
β1 > 0. Density is increasing
β1 < 0. Density is decreasing

yt = β0 + β1·t + εt

B. Simple linear predictor yt = β0 + β1·xt + εt
C. Simple linear predictor with lag yt = β0 + β1·xt + β2·yt-1 + εt
D. Simple linear predictor with lag and step change due to action.

I[t > 2004] = 1 if t ≥ 2005 and =0 for years prior to 2005
yt = β0 + β1·xt + β2·yt − 1 + β3·I[t > 2004] + εt

E. Simple linear predictor with lag and linear response to management manipulation.
at is the Boff-limits^ hunting acreage set aside in the management unit in year t.

yt = β0 + β1·xt + β2·yt − 1 + β3·at + εt

For the moose management example, yt denotes moose density in one management unit during year t, xt denotes the number of hunting
licenses issued in year t, and εt is the difference between the actual moose density and the density predicted by the model
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planning the associated data analysis and reporting.
Given the potential cost of any rigorous monitoring
program (even one that involves only one field station),
this consultation should be considered essential, not a
luxury. The statistical consultation will be most efficient
if those designing the monitoring have done their home-
work in steps 1–6. Youmay discover that what you want
to learn cannot be obtained through monitoring, given
time and cost constraints, and that it is more productive
to focus your efforts elsewhere (Legg and Nagy 2006;
Runge et al. 2011). This insight alone is worth all the
effort devoted to following the road map in steps 1–6!

Sampling one time Data are required to fit the quantita-
tive model so it can be used to assist decision making.
Commonly, the data come from observational studies
that involve sampling. Statistical sampling allows for
valid, unbiased inference from a set of observations (the
sample) to the larger set from which they were selected
(the sample frame), eliminating the need to conduct a
complete census, which is usually infeasible. Statistical
sampling methods provide measures of the uncertainty
associated with the sample estimates (e.g., uncertainty
of the estimated mean), allowing one to assess differ-
ences between the estimated characteristics and pre-
determined reference values [see Reynolds (2012), for
further discussion]. For example, is moose density, as
estimated from a sample of aerial survey transects,
above the threshold density required to allow a hunting
season on the management unit?

Choosing the sample requires making a suite of
decisions regarding (1) the individuals, objects, or loca-
tions being selected for measurement (i.e., the sampling
units); (2) the population or area that we are selecting
from and therefore able to make inferences about (i.e.,
the sample frame); (3) the population or area that we
want to understand (i.e., the target universe); and (4) the
rules or method for choosing sampling units. These
decisions require careful consideration to avoid or clar-
ify any potential sources of bias. Further, the decisions
must be documented—both for future data collectors, so
as to avoid introducing bias, and for future data users, so
they can properly analyze the data (for further informa-
tion, see the references listed in the first paragraph
above) (BStep 7a. Design the survey^ section).

Different choices among the elements 1–4 above
result in tradeoffs between statistical precision and cost
and incorporate different amounts of knowledge about
the structure of the system under study. For example, an

aerial survey of moose may stratify on distinct types of
habitat (e.g., riparian corridors versus open tundra) to
allow for more precise estimates than from a simple
random sample, or logistical constraints associated with
field access may make a simple random sample of
vegetation communities prohibitively expensive and
but a systematic sample more feasible (at the potential
of some loss of precision). The number of possible
methods and the importance of these tradeoffs make it
best to develop the sample design through a collabora-
tive team of experienced field technicians, statisticians,
and managers. More complicated survey designs gener-
ally entail more complicated analyses and other poten-
tial constraints on broader use of the data (Reynolds
2012).

Sampling through time Monitoring adds additional de-
cisions about how frequently and for how long one
should monitor, and how sample selection at one time
relates to selection at another [the statistical literature
refers to this as the Brevisitation design^; see McDonald
(2012) and Urquhart (2012)]. At one extreme is the
decision to select survey locations once and revisit them
on all future surveys (i.e., Brepeated measures,^
Blongitudinal,^ or Bpanel^ design); this maximizes the
ability to detect changes through time but limits cover-
age of the sample frame. At the other extreme, an
entirely new set of locations is selected at each time
point (Bcross-sectional^ design), which maximizes cov-
erage of the sample frame through time but potentially at
the cost of reducing the ability to detect changes in the
response of interest (because of the added noise from
changing locations). The opportunity to select new lo-
cations allows for the potential to broaden the total
proportion of the sample frame that is measured, which
may be a goal (often termed Bcoverage^). In between
these two extremes are a range of approaches that pro-
vide different tradeoffs between the dual goals of cov-
erage and detection of change, e.g., rotating panel de-
signs. The ultimate design decision needs to consider
project-specific factors, such as logistics (is it feasible to
visit a new selection of locations each survey?), costs,
effect of repeating data collection at a location (e.g., will
repeated visits damage or otherwise change the features
being measured?), and the complexity of the analyses
that the design will dictate.

The repetition that comes from sampling through
time raises the potential for problems to arise due to
changes (sometimes subtle) in the sampling design
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elements. For example, if protocols are not specific
about the timing of data collection, logistical or other
pressures may arise that systematically shift the timing
of data collection earlier or later in the season. If this
changes the phenological state being sampled (e.g.,
growth stage), then the final monitoring time series will
be confounded with changes in phenological state (see
Reynolds (2012) for other examples).

Sample size determination Determining an adequate
sample size to accurately estimate key attributes is not
a trivial problem. Sample size is a tradeoff between
accurate estimation of key attributes and cost constraints
(Legg and Nagy 2006). Ecosystem models can be com-
plex, with attributes that can have a wide range of values
and environmental variation that is difficult to predict.
There are multiple sample size decisions that involve
deciding how many samples to collect at a single loca-
tion, multiple locations, and over time. In the moose
example, decisions will need to be made about how to
count the animals, when (in what seasons), the frequen-
cy of surveys (multiple times a year? every year? every
third year?), and the number of sample units to measure
during a single survey.

Computer simulation is the primary tool for calculat-
ing sample sizes; simple formulas generally do not exist
(Smith et al. 2010; Thompson et al. 2011), another
aspect of monitoring design best handled by a statisti-
cian or modeler. It is useful to collect pilot data to
estimate sampling and temporal variation and test pro-
tocols and then use the estimates to derive sample sizes
(Archaux 2008) when such information is unavailable
from other projects or the literature. This differs from the
Bcollect data^ step in the road map, which refers to
collection of project data during the implement and learn
phase. In any event, once data are acquired, one should
revisit the sample size analyses (see phase 4).

Step 7b. Design the analysis Like the survey design, the
data analysis approach reflects tradeoffs among informa-
tion needs (step 2), feasible data collection designs,
reporting deadlines, and technical skills of staff and should
be guided by the quantitative models formulated in step 6.
Because of the interdependence between survey design
and analysis, these components must be thought through
prior to data collection so as to ensure that (1) the analysis
approach meets the program objectives and addresses the
intended information needs and (2) is supported by the
chosen survey design. Planning this ahead of data

collection also allows for alignment of resources necessary
to ensure that the analysis is conducted in a timelymanner.
One should avoid a long investment in collecting moni-
toring data only to discover years into it that the data do
not support the proposed analysis nor answer the motivat-
ing question(s) (Legg and Nagy 2006).

There are potentially three stages of analysis, and fitting
models is just part of one stage. The first stage is to
summarize the most recently collected data using graphi-
cal (histograms, boxplots, and scatterplots) and numerical
(averages, medians, percentages, standard deviations)
methods. These should be reviewed with an eye toward
data checking and exploratory data analysis to catch data
transcription errors and other QA/QC issues.

Depending on the model to be fit and the fitting
method, a potential second stage is to calculate the
summary statistics associatedwith the selected attributes
(Fig. 2), e.g., N , and its standard error and confidence
interval, for estimating population size. The appropriate
calculations will depend on the attribute and the survey
design. For threshold monitoring, this is also when one
assesses whether an attribute appears to have achieved
the specified threshold value. These results provide
information on progress toward the achieving the pro-
gram’s objectives.

The final stage is to analyze the full data set (recent and
historical data). This might include constructing simple
time series plots, e.g., estimates of population abundance
over time with associated confidence intervals. Models
formulated in step 6 usually are fit using the entire data set,
including data from past surveys. The models can be as
simple as a linear model of the measurements (or their
survey summary statistics, e.g., N year i) against time, e.g.,
a trend line (see model A in Table 1, as well as models B
and C). Such time series plots and trend line models might
suffice for status and trends monitoring (see step 5). For
threshold monitoring, the analysis could involve a statis-
tical test (which implicitly involves an underlying model)
of a hypothesis that a threshold level has been reached,
although confidence intervals constructed in the second
analysis stage may suffice.

Effectiveness monitoring and adaptive management
involve models that incorporate measures of management
action(s) or their effects. These might be as simple as step
change models [e.g., model D in Table 1 and various
before-after and BACI analysis procedures (Smith
2002)] or more involved linear models (e.g., model E in
Table 1), or they could be more complex. In this type of
monitoring, analysis goals include estimating the current
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state of the system, assessing change in system state, and
determining whether a management action had the pre-
dicted effect. These last two goals require data from at
least two time periods—before and after the action.

Monitoring data for adaptive management will also
be analyzed to assess the predictive performance of the
quantitative models used in developing the most recent
management guidance. For each of the attributes of
interest, how close were the predictions of current sys-
tem state (made prior to monitoring data collection) to
the actual monitoring observations? If competing quan-
titative models had been fit prior to the most recent
survey, then usually, the models will be refit using the
newly expanded data set as well as calculating a new
estimate of the relative strength of evidence for each
model, e.g., update the model weights (Kendall 2001;
Kendall and Moore 2012). This information would be
used in step 10 to guide future management.

We strongly encourage development and use of
mechanistic models in analyzing monitoring data rather
than relying on Bsimple^ empirical summaries such as
simple linear regression models (Hilborn and Mangel
1997; Bolker 2008). Observing or quantifying empirical
trends is only a first step in understanding the system
being monitored. Intervention in the form of manage-
ment requires understanding how the system operates,
not just knowing that it has changed (Irvine et al. 2015).

Step 7c. Design the data management system Data
stewardship should begin in advance of actual data
collection and should address both the immediate data
analysis needs and long-term archiving of data for future
uses, including those not currently anticipated
(Reynolds et al. 2014). A common pitfall of monitoring
programs is to devote most of the resources to data
collection and very little to documenting, managing,
and using the data to inform decision making. Yet,
error-free, well-documented data are the basis for defen-
sible decision making. Well-designed data management
systems greatly improve efficiency of data collection, as
well as the ease and speed of planned analyses and
reporting, and thus the effectiveness of monitoring for
informing management decisions (Lane et al. 2004;
Reynolds et al. 2014). However, comprehensive atten-
tion to data management is not standard practice in the
conservation science community. Studies suggest that
80 % of the data used as the basis for peer-reviewed
science publications becomes irretrievably lost within
20 years (Gibney and Van Noorden 2013; Vines et al.

2014) and the rate of loss is expected to be even higher
for Bunpublished^ data commonly generated by natural
resource management agencies. A broad estimate of
∼30 % of a monitoring program’s total budget (time
and staff) should be allocated to data quality control
and management (Fancy et al. 2009); commonly 10–
15 % of total budget is devoted to monitoring.

Attention to long-term curation is especially impor-
tant given the lifespan of many monitoring programs
and the potential value of these data for currently un-
foreseen future applications—by the monitoring pro-
gram, its stakeholders, or other users. Curation includes
making data discoverable by others (and, thus, increas-
ing the return on the data collection investment) and
instituting guidelines and systems for data sharing. Data
and metadata must remain linked together and be thor-
ough enough to allow someone unfamiliar with the
project to interpret the data. For Bflat files^ of data stored
in electronic spreadsheets, a separate sheet for metadata
is convenient. However, centralized, web-based data
management systems are essential for collaborative
monitoring projects where many co-operators collect
the same data; these systems require significant ad-
vanced planning and budgeting to ensure that required
technical capacities are engaged (Hunt et al. 2015; Hunt
et al. in press). Such online systems allow for greatly
improved data discovery and delivery, achieving greater
value from the data investment (Reynolds et al. 2014).

As with statistical design and analysis, it is beyond
the scope of this paper to detail all the necessary steps
and technical considerations in designing and
implementing data management for a monitoring pro-
gram. In short, data documentation, including accurate
and complete project metadata (who, where, what, how,
when) and data metadata (what is encoded in each data
field—the data dictionary), are essential. If management
actions are implemented, the database must capture the
timing and implementation conditions, as well as any
problems that arose (e.g., partial implementation). Sim-
ilarly, the database must capture any changes in the
survey design or implementation. Failing to record this
information may make it impossible to discern accurate-
ly the impact of the action. Maintaining the project
record, started in phase 1 and continuing as the moni-
toring design and implementation proceeds, is essential.

Step 7d. Write protocols Another common pitfall of
monitoring programs is lack of well-written protocols.
The protocol summarizes all the decisions made as one
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progresses through the road map, including all survey
design, data collection, data management, analysis,
and reporting plans, as well as hiring considerations
and training (Oakley et al. 2003; US Fish and Wildlife
Service 2013). In addition, the protocol includes spe-
cific instructions for all procedures (standard operating
procedures). The protocol must contain clear, detailed,
and unambiguous procedures so that those unfamiliar
with the project can learn to implement it. This docu-
mentation is essential for the analysis of the data, as
well as for ensuring that the data collection is replica-
ble and defensible and avoids confounding. Of equal
importance, the protocol describes how the monitoring
information will be used, to either track resource status
or inform future management. Most new protocols
require at least two sampling seasons to pilot-test for
feasibility, replicability, logistics, cost, and training
requirements.

Phase 3. Implement and learn

Step 8: collect and manage data

With a written protocol as a guide, one is ready to
implement the survey (at last!). As with the other steps,
the details of the elements involved in step 8—including
safety measures, training, permitting, and logistics,
etc.—require time and resources to plan and will vary
widely in their details. Ideally, at least one cycle of
monitoring is done prior to implementing any manage-
ment. However, in many settings, management is un-
derway prior to monitoring.

Step 9: analyze data and report results

The purpose of monitoring is to generate useful infor-
mation to inform the motivating question(s) (step 1).
Completing steps 1–8 should ensure that the necessary
resources and systems are in place for timely analysis
and summarization of the new information and its com-
munication to the decision makers identified in step 1.
Delayed analysis and reporting not only reduce the
information’s value but also delay potential identifica-
tion of problems in the alignment of the survey design,
data collection, planned analyses, and monitoring ob-
jectives—issues that should be detected and resolved
quickly. Problems with data quality or interpretation
often only come to light when the data are summarized,
graphed, and analyzed.

Data analysis and modeling Analyses should follow
the plan developed in step 7. They should provide an
assessment of how close the current state of the system
is to the state implied by the fundamental objective. For
example, if the fundamental objective is to restore an
endangered species, then data analysis should, at a min-
imum, describe the current state of the species and, for
example, calculate an estimate of abundance and its
standard error.

Analyses should include adequate basic explor-
atory data analysis (EDA) and model diagnostics.
These generally focus on statistical graphics to
screen for Bodd^ data that may signal errors in
collection or management of the data and to assess
the adequacy of the quantitative models (step 6)
used. There are a number of cautions to keep in
mind in when engaging in EDA, however. For ex-
ample, data dredging can result in apparent
Bstatistically significant^ results arising from ran-
domly generated patterns (Anderson et al. 2001a;
Anderson et al. 2001b). Do not immediately assume
that the initial model(s) adequately summarizes the
observed relationships. This is especially important
if knowledge of system behavior is limited and/or
the system attributes are relatively variable. Not all
quantitative models readily lend themselves to Boff-
the-shelf^ diagnostics (see, for example, Harrell
(2002); Ryan (2008), and Fox (2011) for tools for
such assessments and diagnostics).

Reporting and feedback to management Timely
reporting means that decision making improves over
time, managers are able to defend their management
decisions, and the survey is viewed as too important to
cut from the budget. In adaptive management, reports
must be delivered prior to planning the next manage-
ment action. The presentation of results should be
focused explicitly on key information needs defined in
step 1, as well as caveats and insights from the analysis.
Information will likely need to be presented in multiple
ways to address the needs of different stakeholders.
Decision makers will want the monitoring information
translated into user-friendly decision support tools. The
science community expects peer-reviewed journal
papers; agency leadership will also want a brief synopsis
of findings or outcomes. Databases can be programmed
to generate drafts of the needed reports as soon as the
monitoring data are entered and proofed (Hunt et al.
2015).
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Step 10: update models, assess, or plan and implement
actions, when relevant

Monitoring data are used to update systemmodels under
all forms of monitoring. In addition, for monitoring
associated with management actions, the updated
models inform the next cycle of management. The pri-
mary purpose of status and trends monitoring is to
improve system understanding; therefore, the system
model is refined by integrating the new observations
into the quantitative model developed in step 6. The
updated systemmodel may stimulate interest or concern
from policy makers, especially if the system seems to be
heading in an undesirable direction. Policy or manage-
ment planning may ensue. For monitoring to detect a
threshold condition, management actions are anticipated
and defined at the outset. When an attribute is estimated
to pass a specified threshold (step 9), management ac-
tions are considered.

For effectiveness monitoring, the state of the system
is observed before and after an action has occurred,
leading to learning. If the outcome of the action is
unsatisfactory from a management standpoint, this
may prompt a return to phase 1 (frame the problem) to
consider multiple actions, perhaps under a formal adap-
tive management framework. Under adaptive manage-
ment, the models and management actions are fully
specified during steps 1–7. Models are updated with
the monitoring data in step 9 on a defined schedule
(often annually). The model with the strongest weight
of evidence provides guidance regarding the most effec-
tive management action to undertake in the future. The
iterative process of updating the systemmodel with new
information derived from the monitoring data is ongo-
ing (steps 8–10) until system understanding is deemed
adequate for clearly distinguishing among the potential
management actions.

Phase 4. Learn and revise

Few monitoring programs last indefinitely. Perhaps, the
problem or question that prompted the project is re-
solved or has receded in importance. More commonly,
other emerging problems will be judged more pressing
and monitoring effort will be redirected. Changes in the
problem itself or advances in management or monitor-
ing tools may require revisiting the purpose and design
of the survey and, potentially, initiating changes. During

the learn and revise phase, the entire survey is reviewed
using the same process that was used to plan a new one.

If all the steps were not considered or discussed when
the survey was planned, now is the time to do so.
Reviewing an existing monitoring program with the
road map as a guide will result in improvements to the
survey. Or, a review may lead to a decision to end a
survey that has achieved its purpose or has failed to
produce useful information (Possingham et al. 2012).
Adaptive management has a built-in mechanism
(double-loop learning) for revisiting the structuring
phase and revising or ending the survey (Williams et
al. 2009; Williams et al. 2012); the learn and revise
phase represents double-loop learning under adaptive
management (Fig. 5) but is equally applicable to all
types of monitoring. Under threshold monitoring, if
years have elapsed since the monitoring was initiated,
new management options may be available. If system
understanding has advanced in the intervening time, a
revision of the threshold condition may be advised.

The need for Bpause and reflection^ is especially
important for status and trends monitoring (Renner et
al. 2011; Irvine et al. 2015). Because this type of mon-
itoring tends to have less clearly defined objectives, it is
essential to regularly schedule analyses to synthesize the
results and check that the information produced remains
relevant. Use what has been learned about the system,
especially the estimates of variation, to check whether
the sampling design and effort levels are adequate

Set-up phase
Stakeholders

Objec�ves
Alterna�ves

Models
Monitoring

Itera�ve phase
Decision making

Monitoring

Assessment

Fig. 5 The two phases of learning distinguished in adaptive
management (Williams et al. 2009), shown above, also occur in
the road map. Technical learning involves an iterative sequence of
decision making, monitoring, and assessment (road map steps 8–
10). Process and institutional learning involve periodic reconsid-
eration of the set-up elements (road map phase 4—learn and
revise)
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(Reynolds et al. 2011) or can be made more efficient
(Renner et al. 2011).

Even if the motivating problem or decision remains a
priority, the goal is for system learning to reach a level
where formerly major sources of uncertainty are reduced
enough to change the type of information needs motivat-
ing the monitoring. For example, such a change may
allow one to shift from, say, effectiveness monitoring to
threshold monitoring or monitoring under adaptive man-
agement to effectiveness monitoring. Thus, an operation-
al goal of all monitoring should be to continually improve
not only in terms of effectiveness (methods, sample sizes,
efficiencies) but also in terms of the motivating decision
context and information needs.

Summary

In our experience, monitoring programs that succeed
have a clear purpose, strong leadership, and accurate
documentation and emphasize team work and collabora-
tive learning. The road map provides a big-picture per-
spective of a process that can be applied by individuals or
teams engaged in planning new monitoring, as well as
those reviewing the relevance and scientific rigor of
ongoingmonitoring. Specifically, it emphasizes the many
initial planning steps required to produce useful informa-
tion to meet the needs of policy or decision makers. It is a
unified approach that can be applied to any type of
monitoring, including status and trends, threshold, effec-
tiveness, and formal adaptive management. It can be used
for programs of any size and can be applied by staff with
a wide range of technical and scientific skills.

Many people who designmonitoring programs begin
with step 8 (collect data), failing to explicitly clarify the
problem, objectives, and management alternatives;
build a conceptual model; and identify the relevant
system features and decision maker information needs.
They have not thought carefully about what success
looks like, what attributes to monitor, how they will be
measured, or considered the data analysis or any quan-
titative models. These oversights are why monitoring
programs so often fail to deliver as expected.

It is easy to get lost in the details of designing moni-
toring. The road map is a guide to the overall process, a
reminder to keep the big picture in mind, even when
dealing with technical details. It provides a set of bench-
marks (steps) that can be used during the design phase to
keep projects on track, schedule statistical consultants,

prepare budgets, and plan program evaluations for
existing monitoring projects. It does not address all the
underlying technical details of each step; specific guid-
ance can be found in the appropriate literature for each
component or task. The road map helps ensure the value
of monitoring information, now and in the future.
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Appendix. Documenting monitoring in a project
record The project record is an administrative record of a
monitoring project or program. It is a Bliving^ document that is
updated over time as the project evolves. It is best to begin
documentation as soon as phase 1 (frame the problem) is complet-
ed and before moving on to phase 2—design. Comprehensive
documentation of a monitoring program will support writing the
monitoring protocol, summary reports, and journal papers. The
project record is also essential for understanding the rationale for
all aspects of the monitoring program, designing appropriate data
analyses, interpreting monitoring results, and providing key
historical information for program reviews and evaluations. Any
changes to the monitoring program should be documented in the
project record, along with the rationale for those changes. The
project record should be archived with all key project documents,
including the protocols and data sets. The outline that follows is a
suggested format that can be modified to fit the needs of each
project.

1. Introduction

(a) Brief overview of the project, the problem, scope, and
history
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(b) Links to the administrative history and evolution of the
project (5a, below)

2. What’s the problem?

(a) Problem statement

(i) Decision maker(s)

(ii) Types of decisions

(iii) Geographic and temporal scope

(iv) Legal/regulatory context and constraints

(b) Objective hierarchy

(i) Fundamental objective(s)

(ii) Means objectives

(iii) Attributes

(iv) Measures

(v) Threshold values, if any

(c) Conceptual model of the system (influence diagram)

(i) Fundamental objective

(ii) Factors (system drivers)

(iii) Management /policy decisions

(iv) Summary of the literature, as the basis for the con-
ceptual model

(d) Management/policy decisions that will be informed by
the monitoring (if any)

3. Monitoring design

(a) Rationale for undertaking monitoring.

(i) Alternatives considered

(ii) Cost-benefit analysis

(b) Type of monitoring selected and rationale [note: the
details of the following documentation will differ, de-
pending upon the type of monitoring selected]

(c) Quantitative model(s)

(i) Specify competing models and associated predictions

(1) Fully specified, SMART objectives

(2) Attributes

(3) Covariates

(d) Data analysis plan

(i) Derived from models above

(ii) How will the analysis address the problem defined
above (2)?

(iii) Reporting schedule

(e) Data management plan

(i) Data sharing agreements

(ii) Data archiving

(iii) Requirements of the data management system

(f) Protocol

(i) Links to approved protocol documents

(1) Requirements will vary among agencies

(2) Will incorporate some information from the project record,
with a focus on procedures necessary to produce and main-
tain a quality data set.

(3) Technical details (sampling design, measurements,
observations)

(4) Administrative details (who, what, where, when)

(a) Budget

(b) Staffing

(c) Training

(d) Permits, legal documents

4. Implement and learn

(a) Documentation of management actions/decisions, if
any [note: this should also be in the database]

(b) Updated models, based on learning from monitoring
[note: under adaptive management, models are updated
as monitoring data are entered and proofed]

(c) Annual summary of monitoring schedule and activities,
problems encountered, management recommendations,
if any

5. Learn and revise

(a) Administrative history of the project

(i) Survey coordinators/principal investigators (science
team)

(ii) Cooperators (those participating in the monitoring),
if more than one station or agency

(iii) History of meetings, workshops, and conference
calls

(1) Dates

(2) Outcomes/decisions

(iv) Project evolution over time

(1) Budget history

(2) Changes to any aspect of monitoring design, rationale, and
dates implemented.
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(b) List of reports, journal papers, presentations, work-
shops, products and links to archives.

(c) Summary of how program products have supported
management/policy decisions or helped to resolve the
problem (2).

(d) Summary of dates, outcomes, and recommendations
from program reviews

(e) Links to updated models, based on best available infor-
mation (see 4b above)

(f) Summary of dates and changes to monitoring program
administration or monitoring design, with rationale.

(i) Links to revised protocol documents

(g) Implications for future data analysis and reporting.
How will changes to the monitoring program affect
future interpretation of the data?

(h) If program will sunset, document rationale
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