190 research outputs found

    Growing at the limit: Reef growth sensitivity to climate and oceanographic changes in the South Western Atlantic

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordWhilst the impacts of climatic and oceanographic change on lower latitude reefs are increasingly well documented, our understanding of how reef-building has fluctuated in higher latitude settings remains limited. Here, we explore the timing and longevity of reef-building through the mid- to late Holocene in the most southerly known reef (24°S) in the Western Atlantic. Reef core data show that reef growth was driven by a single coral species, Madracis decactis, and occurred over two phases since ~6000 calibrated (cal.) yr B.P.. These records further indicate that there was a clear growth hiatus from ~5500 to 2500 cal. yr B.P., and that there is no evidence of reef accretion on the Queimada Grande Reef (QGR) over the past 2000 yrs. It thus presently exists as a submerged senescent structure colonized largely by non-reef building organisms. Integration of these growth data with those from sites further north (18°S and 21°S) suggests that Intertropical Convergence Zone (ITCZ), South Westerlies Winds (SWW) and El Niño-Southern Oscillation (ENSO) variability and shifts during the Holocene drove changes in the position of the Brazil-Falklands/Malvinas Confluence (BFMC), and that this has had a strong regional influence on the timing and longevity of reef growth. Our results add new evidence to the idea that reef growth in marginal settings can rapidly turn-on or -off according to regional environmental changes, and thus are of relevance for predicting high latitude reef growth potential under climate change.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)razilian Research Council (CNPq

    Luminescence characteristics of quartz from Brazilian sediments and constraints for OSL dating

    Get PDF
    This study analyzes the optically stimulated luminescence (OSL) characteristics of quartz grains from fluvial, eolian and shallow marine sands of northeastern and southeastern Brazil, with especial focus on the applicability of the single-aliquot regenerative dose (SAR) dating protocol. All analyzed Brazilian sediments presented relatively high OSL sensitivity and good behavior regarding their luminescence characteristics relevant for radiation dose estimation. However, some samples from the Lençóis Maranhenses region in northeastern Brazil showed inadequate OSL sensitivity correction, hampering the implementation of the SAR protocol and their ability to behave as a natural dosimeter. While the shallow marine and eolian samples showed a narrow and reliable dose distribution, the fluvial sample had a wide dose distribution, suggesting incomplete bleaching and natural doses estimates dependent on age models

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Performance of missing transverse momentum reconstruction with the ATLAS detector using proton–proton collisions at √s = 13 TeV

    Get PDF
    The performance of the missing transverse momentum (EmissT) reconstruction with the ATLAS detector is evaluated using data collected in proton–proton collisions at the LHC at a centre-of-mass energy of 13 TeV in 2015. To reconstruct EmissT, fully calibrated electrons, muons, photons, hadronically decaying τ -leptons, and jets reconstructed from calorimeter energy deposits and charged-particle tracks are used. These are combined with the soft hadronic activity measured by reconstructed charged-particle tracks not associated with the hard objects. Possible double counting of contributions from reconstructed charged-particle tracks from the inner detector, energy deposits in the calorimeter, and reconstructed muons from the muon spectrometer is avoided by applying a signal ambiguity resolution procedure which rejects already used signals when combining the various EmissT contributions. The individual terms as well as the overall reconstructed EmissT are evaluated with various performance metrics for scale (linearity), resolution, and sensitivity to the data-taking conditions. The method developed to determine the systematic uncertainties of the EmissT scale and resolution is discussed. Results are shown based on the full 2015 data sample corresponding to an integrated luminosity of 3.2 fb−1

    Measurement of VH, H → b b ¯ production as a function of the vector-boson transverse momentum in 13 TeV pp collisions with the ATLAS detector

    Get PDF
    Cross-sections of associated production of a Higgs boson decaying into bottom-quark pairs and an electroweak gauge boson, W or Z, decaying into leptons are measured as a function of the gauge boson transverse momentum. The measurements are performed in kinematic fiducial volumes defined in the `simplified template cross-section' framework. The results are obtained using 79.8 fb-1 of proton-proton collisions recorded by the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 13 TeV. All measurements are found to be in agreement with the Standard Model predictions, and limits are set on the parameters of an effective Lagrangian sensitive to modifications of the Higgs boson couplings to the electroweak gauge bosons

    Measurement of the t¯tZ and t¯tW cross sections in proton-proton collisions at √s=13 TeV with the ATLAS detector

    Get PDF
    A measurement of the associated production of a top-quark pair (t¯t) with a vector boson (W, Z) in proton-proton collisions at a center-of-mass energy of 13 TeV is presented, using 36.1  fb−1 of integrated luminosity collected by the ATLAS detector at the Large Hadron Collider. Events are selected in channels with two same- or opposite-sign leptons (electrons or muons), three leptons or four leptons, and each channel is further divided into multiple regions to maximize the sensitivity of the measurement. The t¯tZ and t¯tW production cross sections are simultaneously measured using a combined fit to all regions. The best-fit values of the production cross sections are σt¯tZ=0.95±0.08stat±0.10syst pb and σt¯tW=0.87±0.13stat±0.14syst pb in agreement with the Standard Model predictions. The measurement of the t¯tZ cross section is used to set constraints on effective field theory operators which modify the t¯tZ vertex

    Muon reconstruction and identification efficiency in ATLAS using the full Run 2 pp collision data set at \sqrt{s}=13 TeV

    Get PDF
    This article documents the muon reconstruction and identification efficiency obtained by the ATLAS experiment for 139 \hbox {fb}^{-1} of pp collision data at \sqrt{s}=13 TeV collected between 2015 and 2018 during Run 2 of the LHC. The increased instantaneous luminosity delivered by the LHC over this period required a reoptimisation of the criteria for the identification of prompt muons. Improved and newly developed algorithms were deployed to preserve high muon identification efficiency with a low misidentification rate and good momentum resolution. The availability of large samples of Z\rightarrow \mu \mu and J/\psi \rightarrow \mu \mu decays, and the minimisation of systematic uncertainties, allows the efficiencies of criteria for muon identification, primary vertex association, and isolation to be measured with an accuracy at the per-mille level in the bulk of the phase space, and up to the percent level in complex kinematic configurations. Excellent performance is achieved over a range of transverse momenta from 3 GeV to several hundred GeV, and across the full muon detector acceptance of |\eta |<2.7

    Erratum: Measurement of angular and momentum distributions of charged particles within and around jets in Pb + Pb and pp collisions at √sNN = 5.02 TeV with the ATLAS detector [Phys. Rev. C 100 , 064901 (2019)]

    Get PDF

    Measurement of single top-quark production in association with a W boson in the single-lepton channel at \sqrt{s} = 8\,\text {TeV} with the ATLAS detector

    Get PDF
    The production cross-section of a top quark in association with a W boson is measured using proton–proton collisions at \sqrt{s} = 8\,\text {TeV}. The dataset corresponds to an integrated luminosity of 20.2\,\text {fb}^{-1}, and was collected in 2012 by the ATLAS detector at the Large Hadron Collider at CERN. The analysis is performed in the single-lepton channel. Events are selected by requiring one isolated lepton (electron or muon) and at least three jets. A neural network is trained to separate the tW signal from the dominant t{\bar{t}} background. The cross-section is extracted from a binned profile maximum-likelihood fit to a two-dimensional discriminant built from the neural-network output and the invariant mass of the hadronically decaying W boson. The measured cross-section is \sigma _{tW} = 26 \pm 7\,\text {pb}, in good agreement with the Standard Model expectation

    Performance of the upgraded PreProcessor of the ATLAS Level-1 Calorimeter Trigger

    Get PDF
    The PreProcessor of the ATLAS Level-1 Calorimeter Trigger prepares the analogue trigger signals sent from the ATLAS calorimeters by digitising, synchronising, and calibrating them to reconstruct transverse energy deposits, which are then used in further processing to identify event features. During the first long shutdown of the LHC from 2013 to 2014, the central components of the PreProcessor, the Multichip Modules, were replaced by upgraded versions that feature modern ADC and FPGA technology to ensure optimal performance in the high pile-up environment of LHC Run 2. This paper describes the features of the newMultichip Modules along with the improvements to the signal processing achieved.ANPCyTYerPhI, ArmeniaAustralian Research CouncilBMWFW, AustriaAustrian Science Fund (FWF)Azerbaijan National Academy of Sciences (ANAS)SSTC, BelarusNational Council for Scientific and Technological Development (CNPq)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Natural Sciences and Engineering Research Council of CanadaCanada Foundation for InnovationNational Natural Science Foundation of China (NSFC)Departamento Administrativo de Ciencia, Tecnología e Innovación ColcienciasMinistry of Education, Youth & Sports - Czech Republic Czech Republic GovernmentCzech Republic GovernmentDNRF, DenmarkDanish Natural Science Research CouncilCentre National de la Recherche Scientifique (CNRS)CEA-DRF/IRFU, FranceFederal Ministry of Education & Research (BMBF)Max Planck SocietyGreek Ministry of Development-GSRTRGC and Hong Kong SAR, ChinaIsrael Science FoundationBenoziyo Center, IsraelIstituto Nazionale di Fisica Nucleare (INFN)Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT)Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT) Japan Society for the Promotion of ScienceCNRST, MoroccoRCN, NorwayPortuguese Foundation for Science and TechnologyMNE/IFA, RomaniaMES of RussiaMESTD, SerbiaMSSR, SlovakiaSlovenian Research Agency - SloveniaMIZS, SloveniaSpanish GovernmentSRC, SwedenWallenberg Foundation, SwedenSNSF Geneva, SwitzerlandMinistry of Science and Technology, TaiwanMinistry of Energy & Natural Resources - TurkeyScience & Technology Facilities Council (STFC)United States Department of Energy (DOE)National Science Foundation (NSF)BCKDF, CanadaCANARIE, CanadaCRC, CanadaEuropean Research Council (ERC)European Union (EU)French National Research Agency (ANR)German Research Foundation (DFG)Alexander von Humboldt FoundationGreek NSRF, GreeceBSF-NSF, IsraelGerman-Israeli Foundation for Scientific Research and DevelopmentLa Caixa Banking Foundation, SpainCERCA Programme Generalitat de Catalunya, SpainPROMETEO, SpainGenT Programmes Generalitat Valenciana, SpainGoran Gustafssons Stiftelse, SwedenRoyal Society of LondonLeverhulme TrustNRC, CanadaCERNANID, ChileChinese Academy of SciencesMinistry of Science and Technology, ChinaSRNSFG, GeorgiaHGF, GermanyNetherlands Organization for Scientific Research (NWO) Netherlands GovernmentMinistry of Science and Higher Education, PolandNCN, PolandNRCKI, Russia FederationJINRDST/NRF, South AfricaSERI, Geneva, SwitzerlandCantons of Bern and Geneva, SwitzerlandCompute Canada, CanadaHorizon 2020Marie Sklodowska-Curie ActionsEuropean Cooperation in Science and Technology (COST)EU-ESF, Greec
    corecore