38 research outputs found

    Three-tiered approach for standard information requirements for polymers requiring registration under REACH

    Get PDF
    Polymers are a very large class of chemicals comprising often complex molecules with multiple functions used in everyday products. The EU Commission is seeking to develop environmental and human health standard information requirements (SIRs) for man-made polymers requiring registration (PRR) under a revised Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) Regulation. Conventional risk assessment approaches currently used for small molecules may not apply to most polymers. Therefore, we propose a conceptual three-tiered regulatory approach for data generation to assess individual and groups of polymers requiring registration (PRR). A key element is the grouping of polymers according to chemistry, physico-chemical properties and hazard similarity. The limited bioavailability of many polymers is a prominent difference to many small molecules and is a key consideration of the proposed approach. Methods assessing potential for systemic bioavailability are integral to Tier 1. Decisions for further studies are based on considerations of properties and effects, combined with systemic bioavailability and use and exposure considerations. For many PRRs, Tier 1 data on hazard, use and exposure will likely be sufficient for achieving the protection goals of REACH. Vertebrate animal studies in Tiers 2 and 3 can be limited to targeted testing. The outlined approach aims to make use of current best scientific evidence and to reduce animal testing whilst providing data for an adequate level of protection

    The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) family

    Get PDF
    The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) enzymes are secreted, multi-domain matrix-associated zinc metalloendopeptidases that have diverse roles in tissue morphogenesis and patho-physiological remodeling, in inflammation and in vascular biology. The human family includes 19 members that can be sub-grouped on the basis of their known substrates, namely the aggrecanases or proteoglycanases (ADAMTS1, 4, 5, 8, 9, 15 and 20), the procollagen N-propeptidases (ADAMTS2, 3 and 14), the cartilage oligomeric matrix protein-cleaving enzymes (ADAMTS7 and 12), the von-Willebrand Factor proteinase (ADAMTS13) and a group of orphan enzymes (ADAMTS6, 10, 16, 17, 18 and 19). Control of the structure and function of the extracellular matrix (ECM) is a central theme of the biology of the ADAMTS, as exemplified by the actions of the procollagen-N-propeptidases in collagen fibril assembly and of the aggrecanases in the cleavage or modification of ECM proteoglycans. Defects in certain family members give rise to inherited genetic disorders, while the aberrant expression or function of others is associated with arthritis, cancer and cardiovascular disease. In particular, ADAMTS4 and 5 have emerged as therapeutic targets in arthritis. Multiple ADAMTSs from different sub-groupings exert either positive or negative effects on tumorigenesis and metastasis, with both metalloproteinase-dependent and -independent actions known to occur. The basic ADAMTS structure comprises a metalloproteinase catalytic domain and a carboxy-terminal ancillary domain, the latter determining substrate specificity and the localization of the protease and its interaction partners; ancillary domains probably also have independent biological functions. Focusing primarily on the aggrecanases and proteoglycanases, this review provides a perspective on the evolution of the ADAMTS family, their links with developmental and disease mechanisms, and key questions for the future

    Radiotherapy to the prostate for men with metastatic prostate cancer in the UK and Switzerland: Long-term results from the STAMPEDE randomised controlled trial

    Get PDF
    BACKGROUND: STAMPEDE has previously reported that radiotherapy (RT) to the prostate improved overall survival (OS) for patients with newly diagnosed prostate cancer with low metastatic burden, but not those with high-burden disease. In this final analysis, we report long-term findings on the primary outcome measure of OS and on the secondary outcome measures of symptomatic local events, RT toxicity events, and quality of life (QoL). METHODS AND FINDINGS: Patients were randomised at secondary care sites in the United Kingdom and Switzerland between January 2013 and September 2016, with 1:1 stratified allocation: 1,029 to standard of care (SOC) and 1,032 to SOC+RT. No masking of the treatment allocation was employed. A total of 1,939 had metastatic burden classifiable, with 42% low burden and 58% high burden, balanced by treatment allocation. Intention-to-treat (ITT) analyses used Cox regression and flexible parametric models (FPMs), adjusted for stratification factors age, nodal involvement, the World Health Organization (WHO) performance status, regular aspirin or nonsteroidal anti-inflammatory drug (NSAID) use, and planned docetaxel use. QoL in the first 2 years on trial was assessed using prospectively collected patient responses to QLQ-30 questionnaire. Patients were followed for a median of 61.3 months. Prostate RT improved OS in patients with low, but not high, metastatic burden (respectively: 202 deaths in SOC versus 156 in SOC+RT, hazard ratio (HR) = 0·64, 95% CI 0.52, 0.79, p < 0.001; 375 SOC versus 386 SOC+RT, HR = 1.11, 95% CI 0.96, 1.28, p = 0·164; interaction p < 0.001). No evidence of difference in time to symptomatic local events was found. There was no evidence of difference in Global QoL or QLQ-30 Summary Score. Long-term urinary toxicity of grade 3 or worse was reported for 10 SOC and 10 SOC+RT; long-term bowel toxicity of grade 3 or worse was reported for 15 and 11, respectively. CONCLUSIONS: Prostate RT improves OS, without detriment in QoL, in men with low-burden, newly diagnosed, metastatic prostate cancer, indicating that it should be recommended as a SOC. TRIAL REGISTRATION: ClinicalTrials.gov NCT00268476, ISRCTN.com ISRCTN78818544

    Addition of docetaxel, zoledronic acid, or both to first-line long-term hormone therapy in prostate cancer (STAMPEDE): Survival results from an adaptive, multiarm, multistage, platform randomised controlled trial

    Get PDF
    BACKGROUND Long-term hormone therapy has been the standard of care for advanced prostate cancer since the 1940s. STAMPEDE is a randomised controlled trial using a multiarm, multistage platform design. It recruits men with high-risk, locally advanced, metastatic or recurrent prostate cancer who are starting first-line long-term hormone therapy. We report primary survival results for three research comparisons testing the addition of zoledronic acid, docetaxel, or their combination to standard of care versus standard of care alone. METHODS Standard of care was hormone therapy for at least 2 years; radiotherapy was encouraged for men with N0M0 disease to November, 2011, then mandated; radiotherapy was optional for men with node-positive non-metastatic (N+M0) disease. Stratified randomisation (via minimisation) allocated men 2:1:1:1 to standard of care only (SOC-only; control), standard of care plus zoledronic acid (SOC + ZA), standard of care plus docetaxel (SOC + Doc), or standard of care with both zoledronic acid and docetaxel (SOC + ZA + Doc). Zoledronic acid (4 mg) was given for six 3-weekly cycles, then 4-weekly until 2 years, and docetaxel (75 mg/m(2)) for six 3-weekly cycles with prednisolone 10 mg daily. There was no blinding to treatment allocation. The primary outcome measure was overall survival. Pairwise comparisons of research versus control had 90% power at 2·5% one-sided α for hazard ratio (HR) 0·75, requiring roughly 400 control arm deaths. Statistical analyses were undertaken with standard log-rank-type methods for time-to-event data, with hazard ratios (HRs) and 95% CIs derived from adjusted Cox models. This trial is registered at ClinicalTrials.gov (NCT00268476) and ControlledTrials.com (ISRCTN78818544). FINDINGS 2962 men were randomly assigned to four groups between Oct 5, 2005, and March 31, 2013. Median age was 65 years (IQR 60-71). 1817 (61%) men had M+ disease, 448 (15%) had N+/X M0, and 697 (24%) had N0M0. 165 (6%) men were previously treated with local therapy, and median prostate-specific antigen was 65 ng/mL (IQR 23-184). Median follow-up was 43 months (IQR 30-60). There were 415 deaths in the control group (347 [84%] prostate cancer). Median overall survival was 71 months (IQR 32 to not reached) for SOC-only, not reached (32 to not reached) for SOC + ZA (HR 0·94, 95% CI 0·79-1·11; p=0·450), 81 months (41 to not reached) for SOC + Doc (0·78, 0·66-0·93; p=0·006), and 76 months (39 to not reached) for SOC + ZA + Doc (0·82, 0·69-0·97; p=0·022). There was no evidence of heterogeneity in treatment effect (for any of the treatments) across prespecified subsets. Grade 3-5 adverse events were reported for 399 (32%) patients receiving SOC, 197 (32%) receiving SOC + ZA, 288 (52%) receiving SOC + Doc, and 269 (52%) receiving SOC + ZA + Doc. INTERPRETATION Zoledronic acid showed no evidence of survival improvement and should not be part of standard of care for this population. Docetaxel chemotherapy, given at the time of long-term hormone therapy initiation, showed evidence of improved survival accompanied by an increase in adverse events. Docetaxel treatment should become part of standard of care for adequately fit men commencing long-term hormone therapy. FUNDING Cancer Research UK, Medical Research Council, Novartis, Sanofi-Aventis, Pfizer, Janssen, Astellas, NIHR Clinical Research Network, Swiss Group for Clinical Cancer Research

    Management of patients with advanced prostate cancer—metastatic and/or castration-resistant prostate cancer: report of the Advanced Prostate Cancer Consensus Conference (APCCC) 2022

    Get PDF
    Background: Innovations in imaging and molecular characterisation together with novel treatment options have improved outcomes in advanced prostate cancer. However, we still lack high-level evidence in many areas relevant to making management decisions in daily clinical practise. The 2022 Advanced Prostate Cancer Consensus Conference (APCCC 2022) addressed some questions in these areas to supplement guidelines that mostly are based on level 1 evidence. Objective: To present the voting results of the APCCC 2022. Design, setting, and participants: The experts voted on controversial questions where high- level evidence is mostly lacking: locally advanced prostate cancer; biochemical recurrence after local treatment; metastatic hormone-sensitive, non-metastatic, and metastatic castration- resistant prostate cancer; oligometastatic prostate cancer; and managing side effects of hormonal therapy. A panel of 105 international prostate cancer experts voted on the consensus questions. Outcome measurements and statistical analysis: The panel voted on 198 pre-defined questions, which were developed by 117 voting and non-voting panel members prior to the conference following a modified Delphi process. A total of 116 questions on metastatic and/or castration- resistant prostate cancer are discussed in this manuscript. In 2022, the voting was done by a web-based survey because of COVID-19 restrictions. Results and limitations: The voting reflects the expert opinion of these panellists and did not incorporate a standard literature review or formal meta-analysis. The answer options for the consensus questions received varying degrees of support from panellists, as reflected in this article and the detailed voting results are reported in the supplementary material. We report here on topics in metastatic, hormone-sensitive prostate cancer (mHSPC), non-metastatic, castration-resistant prostate cancer (nmCRPC), metastatic castration-resistant prostate cancer (mCRPC), and oligometastatic and oligoprogressive prostate cancer. Conclusions: These voting results in four specific areas from a panel of experts in advanced prostate cancer can help clinicians and patients navigate controversial areas of management for which high-level evidence is scant or conflicting and can help research funders and policy makers identify information gaps and consider what areas to explore further. However, diagnostic and treatment decisions always have to be individualised based on patient characteristics, including the extent and location of disease, prior treatment(s), co-morbidities, patient preferences, and treatment recommendations and should also incorporate current and emerging clinical evidence and logistic and economic factors. Enrolment in clinical trials is strongly encouraged. Importantly, APCCC 2022 once again identified important gaps where there is non-consensus and that merit evaluation in specifically designed trials. Patient summary: The Advanced Prostate Cancer Consensus Conference (APCCC) provides a forum to discuss and debate current diagnostic and treatment options for patients with advanced prostate cancer. The conference aims to share the knowledge of international experts in prostate cancer with healthcare providers worldwide. At each APCCC, an expert panel votes on pre-defined questions that target the most clinically relevant areas of advanced prostate cancer treatment for which there are gaps in knowledge. The results of the voting provide a practical guide to help clinicians discuss therapeutic options with patients and their relatives as part of shared and multidisciplinary decision-making. This report focuses on the advanced setting, covering metastatic hormone-sensitive prostate cancer and both non-metastatic and metastatic castration-resistant prostate cancer. Twitter summary: Report of the results of APCCC 2022 for the following topics: mHSPC, nmCRPC, mCRPC, and oligometastatic prostate cancer. Take-home message: At APCCC 2022, clinically important questions in the management of advanced prostate cancer management were identified and discussed, and experts voted on pre-defined consensus questions. The report of the results for metastatic and/or castration- resistant prostate cancer is summarised here

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Addition of Docetaxel to First-line Long-term Hormone Therapy in Prostate Cancer (STAMPEDE) : Modelling to Estimate Long-term Survival, Quality-adjusted Survival, and Cost-effectiveness

    Get PDF
    Background Results from large randomised controlled trials have shown that adding docetaxel to the standard of care (SOC) for men initiating hormone therapy for prostate cancer (PC) prolongs survival for those with metastatic disease and prolongs failure-free survival for those without. To date there has been no formal assessment of whether funding docetaxel in this setting represents an appropriate use of UK National Health Service (NHS) resources. Objective To assess whether administering docetaxel to men with PC starting long-term hormone therapy is cost-effective in a UK setting. Design, setting, and participants We modelled health outcomes and costs in the UK NHS using data collected within the STAMPEDE trial, which enrolled men with high-risk, locally advanced metastatic or recurrent PC starting first-line hormone therapy. Intervention SOC was hormone therapy for ≥2 yr and radiotherapy in some patients. Docetaxel (75 mg/m2) was administered alongside SOC for six three-weekly cycles. Outcome measurements and statistical analysis The model generated lifetime predictions of costs, changes in survival duration, quality-adjusted life years (QALYs), and incremental cost-effectiveness ratios (ICERs). Results and limitations The model predicted that docetaxel would extend survival (discounted quality-adjusted survival) by 0.89 yr (0.51) for metastatic PC and 0.78 yr (0.39) for nonmetastatic PC, and would be cost-effective in metastatic PC (ICER £5514/QALY vs SOC) and nonmetastatic PC (higher QALYs, lower costs vs SOC). Docetaxel remained cost-effective in nonmetastatic PC when the assumption of no survival advantage was modelled. Conclusions Docetaxel is cost-effective among patients with nonmetastatic and metastatic PC in a UK setting. Clinicians should consider whether the evidence is now sufficiently compelling to support docetaxel use in patients with nonmetastatic PC, as the opportunity to offer docetaxel at hormone therapy initiation will be missed for some patients by the time more mature survival data are available. Patient summary Starting docetaxel chemotherapy alongside hormone therapy represents a good use of UK National Health Service resources for patients with prostate cancer that is high risk or has spread to other parts of the body.This study was supported by the UK Medical Research Council (delegation to Swiss Group for Cancer Clinical Research [SAKK] in Switzerland) grant number MRC_MC_UU_12023/25 and the following funders: Cancer Research UK (grant number CRUK_A12459), Medical Research Council, Astellas, Clovis Oncology, Janssen, Novartis, Pfizer, and Sanofi-Aventis. The sponsors played no direct role in the study

    Radiotherapy to the prostate for men with metastatic prostate cancer in the UK and Switzerland: Long-term results from the STAMPEDE randomised controlled trial

    Get PDF
    © 2022 The Authors. Published by PLoS. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.1371/journal.pmed.1003998Background STAMPEDE has previously reported that radiotherapy (RT) to the prostate improved overall survival (OS) for patients with newly diagnosed prostate cancer with low metastatic burden, but not those with high-burden disease. In this final analysis, we report long-term findings on the primary outcome measure of OS and on the secondary outcome measures of symptomatic local events, RT toxicity events, and quality of life (QoL). Methods and findings Patients were randomised at secondary care sites in the United Kingdom and Switzerland between January 2013 and September 2016, with 1:1 stratified allocation: 1,029 to standard of care (SOC) and 1,032 to SOC+RT. No masking of the treatment allocation was employed. A total of 1,939 had metastatic burden classifiable, with 42% low burden and 58% high burden, balanced by treatment allocation. Intention-to-treat (ITT) analyses used Cox regression and flexible parametric models (FPMs), adjusted for stratification factors age, nodal involvement, the World Health Organization (WHO) performance status, regular aspirin or nonsteroidal anti-inflammatory drug (NSAID) use, and planned docetaxel use. QoL in the first 2 years on trial was assessed using prospectively collected patient responses to QLQ-30 questionnaire. Patients were followed for a median of 61.3 months. Prostate RT improved OS in patients with low, but not high, metastatic burden (respectively: 202 deaths in SOC versus 156 in SOC+RT, hazard ratio (HR) = 0·64, 95% CI 0.52, 0.79, p < 0.001; 375 SOC versus 386 SOC+RT, HR = 1.11, 95% CI 0.96, 1.28, p = 0·164; interaction p < 0.001). No evidence of difference in time to symptomatic local events was found. There was no evidence of difference in Global QoL or QLQ-30 Summary Score. Long-term urinary toxicity of grade 3 or worse was reported for 10 SOC and 10 SOC+RT; long-term bowel toxicity of grade 3 or worse was reported for 15 and 11, respectively. Conclusions Prostate RT improves OS, without detriment in QoL, in men with low-burden, newly diagnosed, metastatic prostate cancer, indicating that it should be recommended as a SOC.Research support for this comparison and other comparisons in the STAMPEDE protocol was awarded by Cancer Research UK (CRUK_A12459) www.cancerresearchuk.org (for this comparison, co-authors CCP, DPD, MDM, MKBP, MR, MRS, NDJ; and additionally for other comparisons DG, DM, GA, REL, RM, WC); Medical Research Council (MRC_MC_UU_12023/25, MC_UU_00004/01 and MC_UU_00004/02) www.ukri.org/councils/mrc (to authors MKBP, MRS, REL); and Swiss Group for Clinical Cancer Research, www.sakk.ch (to co-author SG). Other research support for the STAMPEDE protocol was awarded by Astellas www.astellas.com, Clovis Oncology www.clovisoncology.com, Janssen www.janssen.com, Novartis www.novartis.com, Pfizer www.pfizer.com, Sanofi-Aventis www.sanofi.com. CCP, DPD and NDJ are supported by the National Institute for Health Research (NIHR) Biomedical Research Centre at The Royal Marsden NHS Foundation Trust and the Institute of Cancer Research, London.Published onlin

    Abiraterone for Prostate Cancer Not Previously Treated with Hormone Therapy

    Get PDF
    BACKGROUND Abiraterone acetate plus prednisolone improves survival in men with relapsed prostate cancer. We assessed the effect of this combination in men starting long-term androgen-deprivation therapy (ADT), using a multigroup, multistage trial design. METHODS We randomly assigned patients in a 1:1 ratio to receive ADT alone or ADT plus abiraterone acetate (1000 mg daily) and prednisolone (5 mg daily) (combination therapy). Local radiotherapy was mandated for patients with node-negative, nonmetastatic disease and encouraged for those with positive nodes. For patients with nonmetastatic disease with no radiotherapy planned and for patients with metastatic disease, treatment continued until radiologic, clinical, or prostate-specific antigen (PSA) progression; otherwise, treatment was to continue for 2 years or until any type of progression, whichever came first. The primary outcome measure was overall survival. The intermediate primary outcome was failure-free survival (treatment failure was defined as radiologic, clinical, or PSA progression or death from prostate cancer). RESULTS A total of 1917 patients underwent randomization from November 2011 through January 2014. The median age was 67 years, and the median PSA level was 53 ng per milliliter. A total of 52% of the patients had metastatic disease, 20% had node-positive or node-indeterminate nonmetastatic disease, and 28% had node-negative, nonmetastatic disease; 95% had newly diagnosed disease. The median follow-up was 40 months. There were 184 deaths in the combination group as compared with 262 in the ADT-alone group (hazard ratio, 0.63; 95% confidence interval [CI], 0.52 to 0.76; P<0.001); the hazard ratio was 0.75 in patients with nonmetastatic disease and 0.61 in those with metastatic disease. There were 248 treatment-failure events in the combination group as compared with 535 in the ADT-alone group (hazard ratio, 0.29; 95% CI, 0.25 to 0.34; P<0.001); the hazard ratio was 0.21 in patients with nonmetastatic disease and 0.31 in those with metastatic disease. Grade 3 to 5 adverse events occurred in 47% of the patients in the combination group (with nine grade 5 events) and in 33% of the patients in the ADT-alone group (with three grade 5 events). CONCLUSIONS Among men with locally advanced or metastatic prostate cancer, ADT plus abiraterone and prednisolone was associated with significantly higher rates of overall and failure-free survival than ADT alone. (Funded by Cancer Research U.K. and others; STAMPEDE ClinicalTrials.gov number, NCT00268476, and Current Controlled Trials number, ISRCTN78818544.

    Abiraterone acetate and prednisolone with or without enzalutamide for high-risk non-metastatic prostate cancer: a meta-analysis of primary results from two randomised controlled phase 3 trials of the STAMPEDE platform protocol

    Get PDF
    © 2022 The Authors. Published by Elsevier. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(21)02437-5/fulltextBackground Men with high-risk non-metastatic prostate cancer are treated with androgen-deprivation therapy (ADT) for 3 years, often combined with radiotherapy. We analysed new data from two randomised controlled phase 3 trials done in a multiarm, multistage platform protocol to assess the efficacy of adding abiraterone and prednisolone alone or with enzalutamide to ADT in this patient population. Methods These open-label, phase 3 trials were done at 113 sites in the UK and Switzerland. Eligible patients (no age restrictions) had high-risk (defined as node positive or, if node negative, having at least two of the following: tumour stage T3 or T4, Gleason sum score of 8–10, and prostate-specific antigen [PSA] concentration ≥40 ng/mL) or relapsing with high-risk features (≤12 months of total ADT with an interval of ≥12 months without treatment and PSA concentration ≥4 ng/mL with a doubling time of <6 months, or a PSA concentration ≥20 ng/mL, or nodal relapse) non-metastatic prostate cancer, and a WHO performance status of 0–2. Local radiotherapy (as per local guidelines, 74 Gy in 37 fractions to the prostate and seminal vesicles or the equivalent using hypofractionated schedules) was mandated for node negative and encouraged for node positive disease. In both trials, patients were randomly assigned (1:1), by use of a computerised algorithm, to ADT alone (control group), which could include surgery and luteinising-hormone-releasing hormone agonists and antagonists, or with oral abiraterone acetate (1000 mg daily) and oral prednisolone (5 mg daily; combination-therapy group). In the second trial with no overlapping controls, the combination-therapy group also received enzalutamide (160 mg daily orally). ADT was given for 3 years and combination therapy for 2 years, except if local radiotherapy was omitted when treatment could be delivered until progression. In this primary analysis, we used meta-analysis methods to pool events from both trials. The primary endpoint of this meta-analysis was metastasis-free survival. Secondary endpoints were overall survival, prostate cancer-specific survival, biochemical failure-free survival, progression-free survival, and toxicity and adverse events. For 90% power and a one-sided type 1 error rate set to 1·25% to detect a target hazard ratio for improvement in metastasis-free survival of 0·75, approximately 315 metastasis-free survival events in the control groups was required. Efficacy was assessed in the intention-to-treat population and safety according to the treatment started within randomised allocation. STAMPEDE is registered with ClinicalTrials.gov, NCT00268476, and with the ISRCTN registry, ISRCTN78818544. Findings Between Nov 15, 2011, and March 31, 2016, 1974 patients were randomly assigned to treatment. The first trial allocated 455 to the control group and 459 to combination therapy, and the second trial, which included enzalutamide, allocated 533 to the control group and 527 to combination therapy. Median age across all groups was 68 years (IQR 63–73) and median PSA 34 ng/ml (14·7–47); 774 (39%) of 1974 patients were node positive, and 1684 (85%) were planned to receive radiotherapy. With median follow-up of 72 months (60–84), there were 180 metastasis-free survival events in the combination-therapy groups and 306 in the control groups. Metastasis-free survival was significantly longer in the combination-therapy groups (median not reached, IQR not evaluable [NE]–NE) than in the control groups (not reached, 97–NE; hazard ratio [HR] 0·53, 95% CI 0·44–0·64, p<0·0001). 6-year metastasis-free survival was 82% (95% CI 79–85) in the combination-therapy group and 69% (66–72) in the control group. There was no evidence of a difference in metatasis-free survival when enzalutamide and abiraterone acetate were administered concurrently compared with abiraterone acetate alone (interaction HR 1·02, 0·70–1·50, p=0·91) and no evidence of between-trial heterogeneity (I2 p=0·90). Overall survival (median not reached [IQR NE–NE] in the combination-therapy groups vs not reached [103–NE] in the control groups; HR 0·60, 95% CI 0·48–0·73, p<0·0001), prostate cancer-specific survival (not reached [NE–NE] vs not reached [NE–NE]; 0·49, 0·37–0·65, p<0·0001), biochemical failure-free-survival (not reached [NE–NE] vs 86 months [83–NE]; 0·39, 0·33–0·47, p<0·0001), and progression-free-survival (not reached [NE–NE] vs not reached [103–NE]; 0·44, 0·36–0·54, p<0·0001) were also significantly longer in the combination-therapy groups than in the control groups. Adverse events grade 3 or higher during the first 24 months were, respectively, reported in 169 (37%) of 451 patients and 130 (29%) of 455 patients in the combination-therapy and control groups of the abiraterone trial, respectively, and 298 (58%) of 513 patients and 172 (32%) of 533 patients of the combination-therapy and control groups of the abiraterone and enzalutamide trial, respectively. The two most common events more frequent in the combination-therapy groups were hypertension (abiraterone trial: 23 (5%) in the combination-therapy group and six (1%) in control group; abiraterone and enzalutamide trial: 73 (14%) and eight (2%), respectively) and alanine transaminitis (abiraterone trial: 25 (6%) in the combination-therapy group and one (<1%) in control group; abiraterone and enzalutamide trial: 69 (13%) and four (1%), respectively). Seven grade 5 adverse events were reported: none in the control groups, three in the abiraterone acetate and prednisolone group (one event each of rectal adenocarcinoma, pulmonary haemorrhage, and a respiratory disorder), and four in the abiraterone acetate and prednisolone with enzalutamide group (two events each of septic shock and sudden death). Interpretation Among men with high-risk non-metastatic prostate cancer, combination therapy is associated with significantly higher rates of metastasis-free survival compared with ADT alone. Abiraterone acetate with prednisolone should be considered a new standard treatment for this population.Cancer Research UK, UK Medical Research Council, Swiss Group for Clinical Cancer Research, Janssen, and Astellas.Published versio
    corecore