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Abstract

The ADAMTS (A Disintegrin and Metalloproteinase with Thrombospondin motifs) enzymes are secreted, multi-domain
matrix-associated zinc metalloendopeptidases that have diverse roles in tissue morphogenesis and patho-physiological
remodeling, in inflammation and in vascular biology. The human family includes 19 members that can be sub-grouped
on the basis of their known substrates, namely the aggrecanases or proteoglycanases (ADAMTS1, 4, 5, 8, 9, 15 and 20),
the procollagen N-propeptidases (ADAMTS2, 3 and 14), the cartilage oligomeric matrix protein-cleaving enzymes
(ADAMTS7 and 12), the von-Willebrand Factor proteinase (ADAMTS13) and a group of orphan enzymes (ADAMTS6, 10,
16, 17, 18 and 19). Control of the structure and function of the extracellular matrix (ECM) is a central theme of the
biology of the ADAMTS, as exemplified by the actions of the procollagen-N-propeptidases in collagen fibril assembly
and of the aggrecanases in the cleavage or modification of ECM proteoglycans. Defects in certain family members give
rise to inherited genetic disorders, while the aberrant expression or function of others is associated with arthritis, cancer
and cardiovascular disease. In particular, ADAMTS4 and 5 have emerged as therapeutic targets in arthritis. Multiple
ADAMTSs from different sub-groupings exert either positive or negative effects on tumorigenesis and metastasis, with
both metalloproteinase-dependent and -independent actions known to occur. The basic ADAMTS structure comprises
a metalloproteinase catalytic domain and a carboxy-terminal ancillary domain, the latter determining substrate
specificity and the localization of the protease and its interaction partners; ancillary domains probably also have
independent biological functions. Focusing primarily on the aggrecanases and proteoglycanases, this review provides a
perspective on the evolution of the ADAMTS family, their links with developmental and disease mechanisms, and key
questions for the future.
Gene organization and evolutionary history
Mammalian genomes contain 19 ADAMTS genes num-
bered 1 to 20, the designation ADAMTS11 not being
employed because it was assigned to a gene previously
identified as ADAMTS5 [1, 2]. Like their relatives, the
matrix metalloproteinases (MMPs) and the ADAMs (A
Disintegrin And Metalloproteinases), the ADAMTSs
belong to the metzincin protease superfamily, named
for the conserved methionine residue close to the zinc
ion-dependent metalloproteinase active site [3]. Repre-
sentatives of the ADAMTS family are found in all
metazoans, although to date they have not been identi-
fied in single-cell organisms or in plants.
All ADAMTSs are secreted, extracellular enzymes that

have a compound domain organization (Fig. 1), comprising,
* Correspondence: dylan.edwards@uea.ac.uk
School of Biological Sciences, Biomedical Research Centre, University of East
Anglia, Norwich Research Park, Norwich NR4 7TJ, UK

© 2015 Kelwick et al.; licensee BioMed Central
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
Dedication waiver (http://creativecommons.or
unless otherwise stated.
from the amino-terminus: a signal peptide followed by a
pro-region of variable length; a metalloproteinase domain;
a disintegrin-like domain; a central thrombospondin type
1 sequence repeat (TSR) motif; and a cysteine-rich do-
main followed by a spacer region. This basic organization
is manifest by ADAMTS4, and built upon in other family
members with a variety of further carboxy-terminal mod-
ules, including one or more additional TSRs. The entire
carboxy-terminal region downstream of the central TSR is
termed the ancillary domain, and this is where the greatest
differences between ADAMTS family members occur.
Unlike their ADAM relatives, the ADAMTSs lack epider-
mal growth factor (EGF)-like, transmembrane and cyto-
plasmic modules. Separate from the ADAMTSs, another
family of seven ADAMTS-like genes (ADAMTSL) encode
proteins that resemble the ancillary domains of ADAMTS
but lack their catalytic domains. These ADAMTSL pro-
teins, which include ADAMTSL 1 to 6 and papilin, may
function to modulate the activities of the ADAMTSs [2, 4].
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Fig. 1 The ADAMTS (A Disintegrin And Metalloproteinase with ThromboSpondin motifs) family. The basic domain organization of the 19
ADAMTS family members and their major functional groups. Structurally the ADAMTS members are broadly organized into a proteinase domain
and an ancillary domain. The proteinase domain comprises the signal, pro, metalloproteinase and disintegrin-like domains. The greatest variability
between ADAMTS members is found in the ancillary domain, which is composed of one or more thrombospondin type 1 sequence repeats
(TSRs), a cysteine-rich domain and a spacer domain. Some family members also have one or more specialist domains as part of their ancillary
domain, as listed in the key on the right. The diagram is drawn to scale
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The 19 human ADAMTS proteins can be assembled
into eight ‘clades’ on the basis of their domain organization
and their known functions. The aggrecanase and proteogly-
canase clades (ADAMTS1, 4, 5, 8, 15, and ADAMTS9 and
20) can cleave hyaluronan-binding chondroitin sulfate
proteoglycan (CSPG) extracellular proteins, including
aggrecan, versican, brevican and neurocan [5]. This sub-
group has also been labeled ‘angioinhibitory’ on the basis
of the original identification of ADAMTS1 and 8 as anti-
angiogenic factors [6]; nevertheless, ADAMTSs in other
clades also have effects on angiogenesis. Another group
(ADAMTS2, 3 and 14) are pro-collagen N-propeptidases
that are essential for the maturation of triple helical colla-
gen fibrils [7]. A lone family member, ADAMTS13, is the
von-Willebrand factor (vWF)-cleaving protease (vWFCP).
This protease processes large multimeric vWF precursor
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proteins under fluid shear stress conditions to generate
vWF proteins of optimal size for proper blood coagulation
[8]. Another clade (ADAMTS7 and 12) has been recog-
nized as cleaving cartilage oligomeric matrix protein (also
known as thrombospondin-5) [9, 10]. This clade is unique
in the ADAMTS family in possessing a mucin domain to
which chondroitin sulfate chains are attached, conferring
proteoglycan status upon these two enzymes [11]. The
remaining three subgroups, which are defined on the basis
of their domain organizations, each contain a pair of
enzymes (ADAMTS6 and 10; ADAMTS16 and 18;
ADAMTS17 and 19) whose physiological substrates have
yet to be identified, and thus are currently called the
‘orphan’ sub-groups. Like those ADAMTSs whose func-
tions are better understood, several orphan enzymes have
important physiological roles that are emerging from their
associations with inherited human genetic disorders and
acquired diseases.
The pairs of ADAMTS proteins that share similar do-

main structures suggest the occurrence of gene duplica-
tion during evolution [12–16]. Comparison of the
genomes of deuterostomes, namely those of the verte-
brates Homo, Mus and Xenopus and that of the chordate
Ciona, with those of protostome invertebrates (Drosophila
and Caenorhabditis) has provided the view of the evolu-
tionary history of the ADAMTS family summarized in
the schematic and the phylogenetic tree in Fig. 2 [13,
16]. Caenorhabditis elegans and Drosophila melanoga-
ster have four and three ADAMTS orthologs, respect-
ively [12, 13]. Both have a single gene - Gon-1 in the
nematode and CG6107 in the fly - representing the
right-hand branch of the human family shown in Fig. 2a;
these genes are related to ADAMTS9/20. The left-hand
branch is also represented by a single gene in Drosoph-
ila (CG4096) but it is missing entirely in C. elegans,
which likely reflects loss of the founder gene during
nematode evolution. Nevertheless, the remaining Dros-
ophila gene (named stall) and the three C. elegans
ADAMTS-related genes (adt-1, adt-2 and T19D2.1)
cluster as a protostome-specific sub-family that have no
counterparts in deuterostomes [12].
Six ADAMTS genes are present in the basal chordate

Ciona intestinalis, one of the closest invertebrate rela-
tives of the vertebrates, each of which is the root of one
of the eight mammalian clades (ADAMTS3, 6, 7, 9, 15
and 18), the two mammalian clades not represented in
Ciona being ADAMTS13 and the ADAMTS17/19 pair
[12]. This evidence argues that the gene pairs in verte-
brates arose by duplication during their evolution from
their chordate ancestors. The likely sequence of events is
therefore that an ancestral ADAMTS gene duplicated ap-
proximately 650 million years ago, prior to the divergence
of the protostomes (that is, the insects, crustaceans and
nematodes) from the deuterostomes (chordates and
vertebrates). One of these early duplicated genes gave rise
ultimately to the aggrecanase/proteoglycanase sub-group
(the right-hand branch in Fig. 2), while the other duplicate
was the founder of the remaining family members. Subse-
quently, three or four gene duplications occurred during
chordate evolution, with further duplications during verte-
brate evolution.
The ADAMTS9 and 20 gene pair in the aggrecanase/

proteoglycanase sub-group share a high degree of similar-
ity with the C. elegans Gon-1 gene, suggesting their close
relationship with the ancestral gene that founded the
aggrecanases/proteoglycanases. On the basis of their in-
tron and exon structure, however, the other related genes
(ADAMTS1, 4, 5, 8, 15) seem likely to be derived from a
retrotransposition event that occurred early in deutero-
stome evolution involving the same founder gene that also
gave rise to ADAMTS9/20. This event seems to have pro-
duced an intron-less gene that subsequently acquired new
introns at different positions. This evolutionary pathway is
supported by the lack of orthologs of the ADAMTS1, 4, 5,
8, 15 clade in protostomes [12–14]. Subsequently, this
founder gene underwent a duplicative chromosome inver-
sion to generate two adjacent ADAMTS genes in head-to-
head orientation. A later duplication of this pair of genes
resulted in two sets of paired genes, ADAMTS1 and
ADAMTS5 on human 21q21, and the ADAMTS8/15 pair
on human11q24.
The deuterostome sea urchin Strongylocentrus purpur-

atus has eight ADAMTS orthologs that correspond to
five of the eight ADAMTS clades present in vertebrates,
but it lacks any representative for the ADAMTS1/4/5/8/
15 and ADAMTS9/20 aggrecanase/proteoglycanase clades,
suggesting that the progenitor of these genes has been lost
[14]. This sea urchin has two genes with similarity to
ADAMTS13, which had previously been thought to be a
vertebrate-specific gene [12]. The presence of 16
ADAMTS genes in pufferfish (Fugu rubripes, which like
Ciona lacks ADAMTS13 and 17/19), 17 genes in zebrafish
(Danio rerio, which lacks ADAMTS4 and 19) and all 19
ADAMTS genes in Xenopus (X. tropicalis and X. laevis)
argues that most of these gene duplications occurred prior
to the divergence of fish and mammals. Among the zebra-
fish gene complement there are two copies each of
ADAMTS2, 8 and 15, which result from a teleost-specific
whole-genome duplication event [16]. However, only 17
ADAMTS genes have been found in several species of
birds: chicken (Gallus gallus), duck (Anas platyrhynchos)
and zebra finch (Taeniopygia guttata) lack ADAMTS4 and
16, suggesting that these two genes were lost during the
divergence of birds. The expansion of the ADAMTS
family during vertebrate evolution goes hand-in-hand with
the increased complexity of the ECM, which has also
arisen through the duplication, retention and modification
of ancestral genes [17].
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Fig. 2 Evolution of the ADAMTS family. a A schematic representation of the relationships of the eight vertebrate ADAMTS clades and the
probable events (gene duplications and a retrotransposition) that have contributed to the expansion of the family. The figure is not to scale in
terms of evolutionary distance. COMP, cartilage oligomeric protein; vWFCP, von-Willebrand-factor-cleaving protease. b Phylogenetic tree of the
ADAMTS genes inferred by the maximum likelihood method based on the JTT matrix-based model [144]. The bootstrap consensus tree inferred
from 1,000 replicates was taken to represent the evolutionary history of the taxa analyzed [145]. Branches corresponding to partitions reproduced
in less than 50 % bootstrap replicates were collapsed. Initial tree(s) for the heuristic search were obtained by applying the neighbor-joining
method to a matrix of pairwise distances estimated using a JTT model. The analysis involved 70 amino acid sequences. All positions containing
gaps and missing data were eliminated. Evolutionary analyses were conducted in MEGA6 [146]. The vertebrate ADAMTS genes are indicated by a
number followed by a single letter code indicating the species: for example, 1 t represents 1_t ADAMTS1 from Xenopus tropicalis; 15 h is 15_h
ADAMTS15 from Homo sapiens; 8 m is ADAMTS8 from Mus musculus. For Drosophila melanogaster (dro), Caenorhabditis elegans (cel) and Ciona
intestinalis (cio), the annotation is species followed by the gene number; for example, cio 6 is cio_6 ADAMTS6 from Ciona
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Characteristic structural features and mechanism
Pro-domain
The pro-domains of the metzincins generally maintain
latency and direct proper folding of the enzymes; but in
the ADAMTSs they have additional functions. In gen-
eral, ADAMTSs lack the ‘cysteine switch’ that controls
activation of the MMPs, though curiously there is evi-
dence for this in ADAMTS15. All ADAMTSs contain at
least one site (R/KXnR/K↓R) for furin-like pro-protein
convertases (PPCs) and some (such as pro-ADAMTS1
and −4) have been shown to be activated by PPCs in the
trans-Golgi network, leading to secretion of active en-
zyme [18, 19]. Other ADAMTS precursors (such as pro-
ADAMTS5) are activated by furin not in the Golgi but
extracellularly [20], whereas pro-ADAMTS9 is activated
on the cell surface when in a complex with the chaperone
heat shock protein gp96/GRP94 [21]. Loss of the pro-
domain actually reduces the activity of ADAMTS9 to
cleave its substrate, versican; likewise pro-ADAMTS13
does not require pro-domain removal for catalytic activity
[21–23]. The ADAMTS pro-domain may act to chaperone
proper folding and secretion rather than in maintaining la-
tency, although this is not the case for ADAMTS13. This
enzyme has an unusually short pro-domain that probably
acts by influencing binding to other proteins or by regulat-
ing catalytic activity in some other way [22].

Catalytic domain: metalloproteinase and disintegrin-like
modules
The ADAMTSs contain a consensus HEXXHXBG(/N/
S)BXHD catalytic motif, in which the three histidines
coordinate a Zn2+ ion [3]; B represents a large non-polar
residue. A methionine, which in ADAMTSs lies 14 to 20
residues downstream of the third histidine, defines the
‘Met-turn’ common to the catalytic domains of all metzin-
cin metalloproteinases [3]. In contrast to the ADAMs, in
which 8 of the 21 human family members have lost a
functional Zn-binding motif and are therefore proteolytic-
ally inactive [24], all ADAMTSs are predicted to be
catalytically functional.
The ADAMTS metalloproteinase domains are predicted

to adopt the typical metzincin architecture: a globular
structure with an amino-terminal sub-domain comprising
a five-stranded β-sheet on the top; and on the bottom, a
carboxy-terminal sub-domain composed of α-helices in
which the Met-turn is positioned, forming a hydrophobic
pillow underneath the catalytic Zn2+. This creates an
active site cleft into which substrates bind in essentially an
extended, linear configuration [25]. A distinctive feature of
ADAMTS metalloproteinase domains, when compared to
those of the MMPs, is the presence of four disulphide
bonds that stabilize the structure (MMPs have none) [26].
Unlike their ADAM relatives, no ADAMTS have been

reported to interact with integrins via their disintegrin-
like domains, and it has been suggested that this domain
is misnamed in the ADAMTSs. Crystal structure data
for ADAMTS1 [26] and for ADAMTS4 and 5 [27] reveal
that the disintegrin-like domain is a cysteine-rich region
that stacks against the metalloproteinase active-site cleft,
so it is appropriate that we consider it part of the catalytic
domain. A surprising finding from the crystal structures of
the catalytic domains of ADAMTS4 and 5 is the identifica-
tion of two alternative conformations of the active sites
that may exist in equilibrium: an ‘open’ structure with an
additional Ca2+ ion bound and a ‘closed’, inaccessible struc-
ture in which the Ca2+ ion is released [27]. The existence
of two distinct conformational states has not been seen for
MMPs or ADAMs (though crystal data are still sparse)
and it may be an attribute of the ADAMTSs that is used
to regulate their catalytic actions via binding accessory
proteins, substrates or other ADAMTS domains.

Ancillary domain
The ADAMTS enzymes rely upon their carboxy-terminal
ancillary domains for their association with the ECM, for
regulation of their activity, and for specification of their
substrate-binding preferences. The ancillary domain in all
ADAMTS enzymes contains an approximately 50-amino-
acid thrombospondin-like repeat (TSR) that is similar to
the type I repeats of thrombospondins 1 and 2 [28],
followed by a cysteine-rich region of slightly more than
100 amino acid residues (in all except ADAMTS12) that
contains 10 conserved cysteine residues, and finally, a
more variable cysteine-free spacer region, which ranges
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from 103 to 160 amino acids in length. With the sole ex-
ception of ADAMTS4, the spacer domain is followed by 1
to 14 further TSR modules and additional motifs that are
characteristic of particular subgroups. The ADAMTS9/20
pair has the largest number of TSRs and each concludes
with a GON-1 module (first described in C. elegans
Gon-1), which contains 10 conserved cysteine residues
[23]. ADAMTS13 is unique in having two CUB modules.
Several ADAMTSs (ADAMTS2, 3, 6, 7, 10, 12, 14, 16, 17,
18 and 19) possess a PLAC (protease and lacunin) module
that contains six conserved cysteine residues. In ADAMTS7
and 12, a mucin/proteoglycan domain is interposed in the
middle of the seven carboxy-terminal TSRs.

Post-translational modifications
ADAMTS enzymes are glycosylated and their ancillary
domains can be proteolytically processed, with both
types of modification affecting the enzymes’ secretion,
localization, activation or catalytic functions. All ADAMTSs
with the exception of ADAMTS4 are N-glycosylated at
NxS/T sites, with N-glycosylation within the pro-domain
of ADAMTS9 being necessary for its secretion [21]. The
TSRs are sites for C-mannosylation at tryptophans in
conserved WxxW motifs, and O-fucosylation of serine or
threonine residues in CxxS/TCG motifs, as demonstrated
for the type I repeats in thrombospondins [29]. The
O-fucosylation of ADAMTS13 regulates its secretion [30]
and is probably a quality-control mechanism that ensures
proper protein folding [2]. The mucin domain of
ADAMTS7 is modified by the addition of CS GAG
chains, which together with N-glycosylation of the pro-
domain may regulate the enzyme’s cell-surface association
and sequential processing by furin [11]. Proteolytic
processing within the ancillary domains has been reported
for many ADAMTS enzymes, and in some cases the
cleavages are autolytic [18, 31, 32].

Inhibitors of the ADAMTSs
Like the ADAMs, ADAMTSs show restricted suscepti-
bility to inhibition by the four tissue inhibitors of
metalloproteinases (TIMPs) [33]. Where multiple TIMPs
have been tested, as is the case for ADAMTS2 [34] and
ADAMTS4 [35], TIMP-3 emerges as the most effective
inhibitor. The aggrecanase activity of ADAMTS1 is
inhibited by both TIMP-2 and −3, but not by TIMP-1
and −4 [36]. The ancillary domains of ADAMTS4 and 5
promote interactions with TIMP-3 [37]. Inhibition of
ADAMTS4 aggrecanase activity by TIMP-3 is enhanced
by aggrecan, through a mechanism that involves the
interaction of aggrecan GAG chains with the TSR and
spacer regions of ADAMTS4 [38].
Another key difference between the ADAMTSs and the

MMPs relates to their mode of inhibition by TIMPs. For
MMP inhibition, the amino-terminal cysteine residue of a
mature TIMP molecule is essential to coordinate with the
active site Zn2+ [33]. Extension of TIMP-3 at the amino
terminus by an alanine residue abrogates MMP inhibitory
activity, but potent inhibition of ADAMTS4 and 5 is
retained [39]. This may be significant in the design of se-
lective ADAMTS inhibitors, such as cis-1(S)2(R)-amino-2-
indanol-based compounds. These compounds are potent
inhibitors of ADAMTS4 and 5, with Ki values in the low
nM range and selectivity two orders of magnitude greater
than that of the MMPs, suggesting that they are good plat-
forms for the development of highly selective aggrecanase
inhibitors [40]. Interference with substrate interactions by
binding to exosites in the ancillary domains of ADAMTS
is also a viable strategy, as shown by the use of calcium
pentosan polysulfate for ADAMTS4 aggrecanase inhib-
ition [41]. Also, granulin-epithelin precursor binds to
the carboxy-terminal TSR motifs of ADAMTS7 and 12,
blocking the abilities of these enzymes to cleave cartil-
age oligomeric protein (COMP) [42].
The activity of the ADAMTSs is also controlled by

their internalization and degradation. For ADAMTS4
and 5 these processes have been shown to involve inter-
action with low-density lipoprotein-related protein-1
(LRP-1) [43, 44]. Differential affinity for LRP-1 results in
different half-lives for extracellular ADAMTS4 and 5
[44]. As LRP-1 also binds and internalizes TIMP-3, and
as this interaction is blocked by heparan sulfate GAGs,
which also potentiates TIMP-3 activity, there is potential
for modulating the tissue activities of ADAMTS using
sulfated glycan mimics [45].

Localization and function
The ADAMTS proteases have important roles in tissue
development and maintenance, and their dysregulation
or mutation is associated with a number of diseases. In
the sections that follow we provide an overview of the
current knowledge of the functions and regulation of
ADAMTSs that has emerged from work on human
pathologies and gene-knockout mice, concentrating on
the aggrecanase/proteoglycanases. Other recent reviews
have focused on the roles of ADAMTSs in arthritis [5,
46], cancer [47–51], atherosclerosis [52] and central ner-
vous system injury and disorders [53].
Mutations in several ADAMTS genes are associated

with human autosomal recessive Mendelian inherited
disorders; this topic has been the focus of an excellent
recent review [4]. The extreme skin fragility displayed by
sufferers of Ehlers-Danlos syndrome type VIIC, which
corresponds to dermatosparaxis in cattle and sheep,
arises due to inactivation of ADAMTS2 [41]. Recessive
mutations in ADAMTS13 are responsible for a condition
called thrombotic thrombocytopenic purpura (TTP),
which is caused by a failure to cleave the otherwise
pro-thrombogenic ultra-large von Willebrand Factor
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multimers in the circulation, resulting in platelet ag-
gregation and vessel occlusion [54]. Autoantibodies to
ADAMTS13 also give rise to acquired TTP [55]. The
connective tissue disorder Weill-Marchesani syndrome
(WMS) manifests by short stature, brachydactyly, joint
stiffness, cardiac valve stenosis and ectopia lentis (lens
dislocation), and can be inherited in both autosomal
dominant and recessive modes. Autosomal dominant
WMS is attributable to mutations in the ECM protein
fibrillin-1, which is required for formation of tissue
microfibrils [56]. By contrast, autosomal recessive
WMS is attributable to mutations in ADAMTS10 [57].
ADAMTS10 binds to fibrillin-1 and −2 and promotes
microfibril formation in the ECM [58], but it has been
suggested that its function may be independent of its
protease activity [4]. Significantly, mutations in two
members of the ADAMTSL gene family (ADAMTSL2
and 4) result in syndromes whose phenotypes overlap
the ocular, skeletal and cardiac features of WMS, and
are also probably linked to proper microfibril forma-
tion in the affected tissues [4]. Likewise, mutations in
ADAMTS17 cause a recessive WMS-like phenotype
[59]. Another inherited ocular syndrome, microcornea,
myopic chorioretinal atrophy and telechanthus (MMCAT)
is caused by mutations in the orphan gene ADAMTS18
[60, 61]. Although not yet detected in human genetic
disorders, inactivation of the Adamts16 gene in rodents has
been shown to lead to hypertension, cryptorchidism and
male infertility, and aberrant renal development [62–64].
Table 1 summarizes the major tissue locations in which

ADAMTS genes are expressed (see also the BioGPS data-
base - http://biogps.org) and known ADAMTS substrates.
Many ADAMTS genes are transcriptionally regulated by
cytokines, growth factors, hormones and inflammatory
mediators: major inducing and repressing stimuli or
regulators are shown, though it must be emphasized that
this list is not exhaustive. In Table 2 we have also listed
the phenotypes of Adamts knockout animals, which are
covered more extensively in another recent review [4].

Development
A principal developmental role for the aggrecanases/
proteoglycanases is in the cleavage of the CSPG versi-
can. Versican is an essential ECM component during
embryogenesis as it gives rise to a loose, hydrated
hyaluronan-rich matrix that provides structural sup-
port while allowing dynamic remodeling during mor-
phogenesis. It influences the adhesion, migration and
proliferation of many cell types; versican-null mice die
around E10 because of cardiac defects [65]. Versican
cleavage is regulated during development to dismantle
transitional structures, but versican cleavage fragments
are themselves bioactive factors that modulate diverse
cell signaling pathways [66]. Cleavage in vivo liberates
the amino-terminal 70-kDa G1 hyaluronan-binding
domain with a DPEAAE neo-epitope at its carboxyl
terminus, which has been termed ‘versikine’ [67]. Anti-
bodies against DPEAAE have shown that ADAMTS1,
4, 5, 9, 15 and 20 are versicanases in various contexts
[68–70], including cardiac development [71, 72], limb
morphogenesis [73], palate formation [74], skin pig-
mentation [75], and myogenesis [76, 77].
Developmental defects in versican cleavage underpin

the phenotypes displayed by mice that are deficient in
Adamts1, 5, 9 and 20 (Table 2). During heart formation,
the initially immature versican-rich ECM is replaced by
a collagen, proteoglycan and elastin-containing matrix.
Adamts9-null mice die prior to gastrulation, but hemizy-
gous Adamts9+/− mice have heart malformations that
reflect decreased detection of the DPEAAE neo-epitope
and resulting accumulation of intact versican [71].
Adamts5−/− mice have enlarged heart valves by late
fetal stages, correlating with reduced versican cleavage
[72]. This phenotype was rescued by in vivo reduction of
the level of versican by intercrossing with Vcan hetero-
zygous mice. Thus, ADAMTS5 is required during heart
development for the clearance of the early versican-rich
matrix.
A similar requirement for removal of versican by

ADAMTS5 is seen in skin development [78]. In this
process, it is unnecessary to invoke a role for a neo-
active versikine as partial depletion of versican restored
normality. A dramatically different outcome is seen,
however, in other morphogenetic events, including inter-
digital web regression during autopod development, fail-
ure of which results in syndactyly, or webbing of the fin-
gers and toes. Mice carrying combinations of null alleles
for Adamts5, Adamts9 and Adamts20 (the latter gene is
also known as the ‘belted’ locus, bt) show a failure of
web regression, along with reduced versican cleavage
and apoptosis [73]. Thus, the combined proteolytic ac-
tivities of ADAMTS5, 9 and 20 are required to keep ver-
sican proteolysis above a threshold required for web
regression. The strategy of reducing in vivo versican
levels by heterozygosity resulted in 100 % penetrant
syndactyly when combined with the absence of a single
protease, ADAMTS20. In this context, therefore, the
bioactivity of a versican cleavage fragment is probably
required to promote web regression, a hypothesis that
was confirmed by administration of recombinant G1-
DPEAAE versikine. A similar outcome was observed
with regard to palate formation [74]. Cleft palate occurs
as a result of the failure of the two lateral palatal epithe-
lial shelves to fuse and undergo epithelial-mesenchymal
transition. Adamts9+/−;bt/bt mice show fully penetrant
cleft palate, which is associated with decreased versican
cleavage. Once again, versican heterozygosity exacerbated
the phenotype seen with mice deficient in ADAMTS20
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Table 1 ADAMTS genes: their chromosomal positions, major tissue expression locations, expression-inducing factors bstrates, and associations with
pathologies

Gene Location Expression Factors inducing or
(repressing) expression

Substrates Pathology associations

ADAMTS1 21q21 Ovary, bronchial epithelial cells, fetal lung, placenta,
smooth muscle, uterus, adrenal cortex, adipocyte, ciliary
ganglion, prostate, olfactory bulb, breast stromal fibroblasts
and myoepithelial cells

Progesterone, Brg1, IL-1,
S100A8, S100A9, TNFα

Aggrecan, versican, syndecan PI-2,
semaphorin 3C, nidogen-1, −2, d ocollin-3,
dystroglycan, mac-2, gelatin ( atured
collagen type I), amphiregulin F-α,
heparin-binding EGF

Cancer (both pro- and anti-
tumorigenic/metastatic), anti-
angiogenic

ADAMTS2 5q35 Adipocyte, skeletal muscle, superior cervical ganglion,
uterus, placenta, heart, liver, lung, tongue, smooth muscle,
breast stromal fibroblasts

Glucocorticoids (in
monocytes), IL-6

Fibrillar procollagens types I-III a V Ehlers-Danlos syndrome type VIIc,
dermatosparaxis (in sheep and
cattle)

ADAMTS3 4q21 CD105+ endothelial cells, CD34+ cells, pineal gland,
cartilage, bone, skeletal muscle, tendon, breast
myoepithelial cells

Fibrillar procollagen type II, bigl

ADAMTS4 1q23 Ovary, spinal cord, adrenal cortex, ciliary ganglion,
trigeminal ganglion, brain, retina, pancreas (islets), fetal
lung, breast myoepithelial cells

IL-1 + oncostatin M, TNFα,
S100A8, S100A9, leptin, IL-6

Aggrecan, versican, reelin, bigly brevican,
matrilin-3, α2-macroglobulin, CO

Arthritis

(HDAC inhibitors, pentosan
polysulfate)

ADAMTS5 21q21 Adipocyte, uterus, breast myoepithelial cells IL-1, TNFα, S100A8, S100A9,
leptin, IL-6

Aggrecan, versican, reelin, bigly matrilin-4,
brevican, α2-macroglobulin

Arthritis, cancer (anti-tumorigenic,
anti-angiogenic)

(HDAC inhibitors)

ADAMTS6 5q12 Superior cervical ganglion, trigeminal ganglion, appendix,
heart, breast myoepithelial cells

TNFα, -

ADAMTS7 5q24 Trigeminal ganglion, adrenal cortex, liver, heart, skeletal
muscle, intervertebral disc, breast stromal fibroblasts

PTHrP COMP Coronary artery disease (smooth
muscle cell migration)

(miR-29a/b)

ADAMTS8 11q24 Skeletal muscle, heart, liver, superior cervical ganglion,
adrenal cortex, breast stromal fibroblasts and luminal
epithelial cells

Aggrecan

ADAMTS9 3p14 Dorsal root ganglion, breast myoepithelial cells TNFα, IL1 + oncostatin M,
leptin

Aggrecan, versican Cancer (anti-angiogenic)

(HDAC inhibitors)

ADAMTS10 19p13 CD8+ T-cells, brain, uterus, breast stromal fibroblasts Fibrillin-1 Weill-Marchesani syndrome

ADAMTS12 5p13 Liver, bone marrow, atrioventricular node, intervertebral
disc, breast stromal fibroblasts and myoepithelial cells

COMP Cancer (pro- and anti-tumorigenic)

ADAMTS13 9q34 Liver, CD71+ early erythroid cells, lung, thyroid, breast
myoepithelial cells

(IL-1) vWF Thrombotic thrombocytopenic
purpura

ADAMTS14 10q22 Thalamus, bone marrow, fetal thyroid, adipocyte,
cerebellum, bone, skin, fibroblasts, breast myoepithelial
and luminal epithelial cells

Fibrillar procollagen type I (pNα d pNα2
chains)
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Table 1 ADAMTS genes: their chromosomal positions, major tissue expression locations, expression-inducing factors, substrates, and associations with
pathologies (Continued)

ADAMTS15 11q24 Colon, brain, heart, uterus, musculoskeletal system, breast
myoepithelial cells

Aggrecan, versican Cancer (anti-tumorigenic/metastatic,
anti-angiogenic)

ADAMTS16 5p15 Breast myoepithelial cells Follicle stimulating
hormone; forskolin (cAMP);

- Hypertension

Transcription factors: Wilm’s
tumor-1; Egr-1, Sp1

ADAMTS17 15q26 Breast myoepithelial cells - Weill-Marchesani-like syndrome

ADAMTS18 16q23 Ciliary ganglion, heart, skin, brain, breast myoepithelial cells -

ADAMTS19 5q23 Dorsal root ganglion, breast myoepithelial cells -

ADAMTS20 2q12 Brain, appendix, heart, liver, skeletal muscle, pituitary,
trigeminal ganglion, breast myoepithelial cells

Versican
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Table 2 ADAMTS knockout and mutant mouse phenotypes

Gene Phenotype of gene knockout or mutant mice Reference(s)

Adamts1 Growth retardation, adipose tissue malformation [91]

Impaired fertility with defective ovulation [153]

Severe kidney abnormalities: enlarged renal calices with fibrosis leading to obstruction of uteropelvic junction; abnormal
adrenal medullary architecture with no formation of capillaries

[92] [148]

[150]

Defective follicular development during ovulation, delay in development of ovarian lymphatic vessels [94, 95]

Impaired skin wound healing; effects on keratinocyte and fibroblast migration [98]

No defects in aggrecan turnover in vivo or in vitro [145]

Reduced tumorigenesis and metastasis in PyMT mammary cancer, with increased apoptosis [117]

Defective myocardial morphogenesis [96]

Selective decline in synaptic protein levels in frontal cortex of female Adamts1−/− mice [58]

Adamts2 Fragile skin at 1–2 months postnatal; male sterility [144]

Widespread defects in procollagen III processing; abnormal lungs [142]

Reduced extent and stability of carbon tetrachloride-induced hepatic fibrosis [141]

Adamts4 No phenotype unchallenged [69]

Perinatal lethality, exacerbation of renal phenotype in Adamts1−/−;Adamts4−/− double knockout mice [138]

Adamts5 No phenotype unchallenged. Protection in surgery-induced osteoarthritis and antigen-induced arthritis models [69]

[68]

Adamts4−/−;Adamts5−/− double knockout mice phenotypically normal; osteoarthritis phenotype same as Adamts5−/− mice [146]

Blockade of fibrosis and accumulation of aggrecan in joints in the DMM and TTR models of osteoarthritis [143]

[139]

Reduced changes in subchondral bone in DMM model of osteoarthritis [152]

Altered biomechanical properties of tendon [81]

Cardiac valve defects resembling myxomatous valve disease; rescued in versican (Vcan) heterozygotic animals [147]

Partial reduction of interdigital web regression [151]

Impaired dermal repair in excisional skin wound healing; aggrecan accumulation, altered transforming growth factor β
(TGFβ) signaling

[140]

Dermal fibroblasts have myofibroblastic phenotype showing increased contractility in three-dimensional collagen gels, rescued
in versican (Vcan) heterozygotic animals

Adamts9 Embryonic lethal at E7.5 days post coitum [83]

Partial reduction of interdigital web regression, enhanced in Adamts5−/−;Adamts9−/+; bt/bt mice [82]

Abnormal cardiac development in Adamts9+/− mice [80]

Adamts12 No phenotype unchallenged; Elevated tumor growth and angiogenesis [104]

Exacerbated inflammation and airway dysfunction in allergen-induced airways disease [149]

More severe inflammation and delayed recovery following colitis, endotoxic sepsis and pancreatitis induction [130]

Adamts13 Little phenotype unchallenged; loss of ADAMTS13 is pro-thrombotic but insufficient to generate thrombotic thromboscytopenic
purpura

[137]

Adamts20 Mutations in Adamts20 are found in belted (bt) mice, causing white spotting in the torso due to defective melanoblast
survival

[83]

Partial reduction of interdigital web regression, enhanced in Adamts5−/−;Adamts9−/+; bt/bt mice [82]

Adamts9+/−;bt/bt mice have cleft palate [86]

Kelwick et al. Genome Biology  (2015) 16:113 Page 10 of 16
alone, suggesting that ADAMTS9 and 20 co-operate in
the fusing palate. Functional co-operation of ADAMTS9
and 20 is also seen in their roles in melanoblast survival
linked to coat pigmentation [75].
Versican cleavage by ADAMTS1 also underlies the roles

of this enzyme in ovulation and cardiac development.
Adamts1-null mice have extensive perinatal lethality,
with surviving animals showing decreased growth and
abnormalities in ureteral, adrenal and adipose tissues
and infertility in female mice, indicating the importance
of this enzyme in organogenesis and ovulation [79, 80].
ADAMTS1 expression by the granulosa cells of ovarian
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follicles is induced by progesterone, leading to follicle
rupture by cleavage of the surrounding versican-rich
matrix, which allows release of the oocyte [81, 82]. In
Adamts1−/− mice, both ovulation and subsequent
fertilization were severely impaired as a result of the
persistence of versican. In cardiac development in mice,
Adamts1 expression is repressed by a chromatin re-
modeling protein, Brg1, leading to an extracellular
environment within the cardiac jelly that supports the
formation of the myocardial trabeculae [83]. Subsequently,
ADAMTS1 production is switched on to terminate trabe-
culation, which coincides with the disappearance of
versican. The participation of several ADAMTS enzymes
in cardiac development suggests that they may also be
involved in cardiomyopathies and heart failure in humans.

Cardiovascular disease
In addition to the roles of versican in development,
there is growing - and conflicting - evidence that this
proteoglycan and its cleavage by ADAMTS enzymes
may be associated with vascular pathologies [52]. It is
present in atherosclerotic intimal thickenings and in
advanced lesions, where it contributes to lipid retention
and may influence the adhesion and recruitment of
macrophages. In atherosclerotic lesions, ADAMTS1 is
expressed by smooth muscle cells, whereas ADAMTS4
is a product of macrophages and its levels increase
during lesion development [84]. Versican cleavage by
ADAMTS1 could promote atherosclerosis through the
activity of versikine in stimulating the migration of vas-
cular smooth muscle cells (VSMCs) [85]. By contrast,
ADAMTS5 has been suggested to be protective as it is
depleted in atherosclerotic aortas, leading to accumula-
tion of versican and biglycan [86]. ADAMTS7 is also
linked to vascular disease because it promotes VSMC
migration mediated by cleavage of COMP [87, 88].
Genome-wide association studies have identified
ADAMTS16 as a candidate locus involved in inherited
hypertension [89], and this candidacy is supported by
targeted disruption of Adamts16 in a rat model [90].

Arthritis
The ‘aggrecanase’ moniker for the aggrecanase/proteo-
glycanase group of enzymes originated in the arthritis
field. Osteoarthritis (OA) emerges as a result of a
progressive loss of aggrecan from cartilage, leading to
exposure of the collagen matrix and its breakdown by
MMP13 [91]. The most significant aggrecan cleavage site
for OA pathogenesis is located at a highly conserved se-
quence TEGE373↓374ARGS, at which MMPs do not cut.
Antibodies that recognize the 374ARGS neo-epitope led
to the discovery of aggrecanase-1, which proved to be
ADAMTS4 [92] and aggrecanase-2, which is ADAMTS5
[93]. Subsequently, other related ADAMTS enzymes,
including ADAMTS1, 8, 9 and 15, were shown to have
aggrecanase activity [28, 36, 94–96]. ADAMTS16 and 18
are also weak aggrecanases [97].
Various lines of evidence indicate that ADAMTS4 and

5 are the principal enzymes involved in the pathogenesis
of the arthritides [91, 98]. They are the major aggreca-
nases present in cartilage, though in vitro ADAMTS5 is
about 1,000 times more potent than ADAMTS4 [99]. In
human cartilage explants and chondrocytes, knockdown
of either ADAMTS4 or 5 (but not ADAMTS1) attenu-
ated aggrecan breakdown [100], suggesting that both
enzymes may be involved in human tissues. Expression
of these two enzymes is augmented by cytokines such as
interleukin-1 and oncostatin-M, which provoke aggrecan
breakdown in tissues [101]. In mice, however, ADAMTS5
alone is the critical enzyme, as Adamts5−/− mice show
significantly reduced joint destruction when compared to
wild-type or Adamts4−/− mice in surgical and allergen-
induced models of arthritis (Table 2) [102, 103]. Other
ADAMTSs may be physiologically relevant aggrecanases
in tissues other than cartilage: for example, aggrecan
cleavage co-localized with ADAMTS1 in the developing
kidney and was reduced in Adamts1−/− embryos when
compared to wild-type animals. Local cofactors such as
Fibulin-1, which binds to ADAMTS1 and increases its
aggrecanase activity, may be important in determining
which enzyme has the principal activity in a particular tis-
sue context [104]. Also, ancillary domain cleavages change
enzyme activities: autolytic and MMP17-mediated pro-
cessing of ADAMTS4 in its ancillary domain enhance its
ability to cleave aggrecan [105, 106]. Thus, ADAMTS5
(and in humans ADAMTS4) is a target for therapeutic
inhibition. Selective inhibitors are yielding promise, as
shown by the protective effects of the aggrecanase-
selective inhibitor AGG-523 in a rat joint-instability-
induced model of arthritis [107].

Cancer
Numerous ADAMTS genes have been linked to cancer
development and progression, with both promoting and
antagonistic actions apparent. These dual roles probably
reflect the effects of ADAMTS enzymes on the tumor
microenvironment, affecting the interplay between ma-
lignant cells, the local stroma and the immune system.
For many family members, the dominant theme is tumor
suppression as they show epigenetic silencing (ADAMTS1,
8, 9, 12 and 18) or mutational inactivation (ADAMTS15)
in several cancer types [48, 51, 108–114]. ADAMTS1, 3, 5,
8, 9, 10 and 18 are down-regulated in human breast
carcinomas compared to normal tissue, while only
ADAMTS4, 6, 14 and 20 are up-regulated [115].
Though originally reported for ADAMTS1 and 8,

many ADAMTSs have proved to be anti-angiogenic, a
property that may contribute to their tumor-suppressive
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actions [6, 116–121]. Metalloproteinase-dependent
and -independent activities have been observed, with
ADAMTS1 displaying both types of mechanism [122].
This enzyme cleaves matrix-bound thrombospondins-1
and −2, generating bioactive anti-angiogenic fragments
[123], and also sequesters angiogenic factors such as the
vascular endothelial growth factor VEGF165 [124] and
basic fibroblast growth factor [125]. Metalloproteinase-
independent inhibition of neovascularization has also been
seen for ADAMTS2 [116], ADAMTS4 [118], ADAMTS5
[120] and ADAMTS12 [117]. The TSR domain may be re-
sponsible for these protease-independent activities since
peptides (termed ‘Adamtsostatins’) corresponding to the
TSRs of several family members are anti-angiogenic, indi-
cating that this may be a general activity of the ADAMTSs
[121, 126]. Metalloproteinase-dependent anti-angiogenic
activity is displayed by ADAMTS9, but the mechanism is
as yet unknown as thrombospondin cleavage has been
ruled out [119]. The identities of the cryptic angio-
inhibitory substrates of ADAMTS9 and ADAMTS15 [96]
will be important to elucidate.
That ADAMTSs can have both pro- and anti-

tumorigenic functions, depending on the cancer and
its context, is best illustrated by ADAMTS1, which is
down-regulated in breast, primary head and neck car-
cinomas, and epigenetically silenced in around 85 % of
colorectal cancer cell lines [115, 127, 128]. Neverthe-
less, it appears to promote metastasis where its expres-
sion is activated later in tumor progression [122, 127,
129]. Its tumor-promoting action dominates in the
highly aggressive MMTV-PyMT mouse mammary
cancer model: Adamts1−/−;PyMT mice show reduced
tumor growth and metastasis as a result of increased
tumor cell apoptosis, while the cell proliferation and
vascularity of their tumors were unaffected [130]. Tu-
mors in mice displayed reduced cleaved versican and
increased presence of cytotoxic immune cells, suggest-
ing that ADAMTS1 creates a tumor-promoting micro-
environment in the mammary gland. This may involve
the shedding of epidermal growth factor receptor
(EGFR) ligands, which has been linked to promotion of
metastasis in other syngeneic mouse models [131] and
to the collaboration of ADAMTS1 with MMP-1 to pro-
mote bone metastasis of human xenografts [132]. Other
mechanisms that potentially contribute to the metastasis-
enhancing effects of ADAMTS1 include promotion of cell
migration by cleavage of Syndecan 4 and Semaphorin 3C
[133, 134], and induction of endothelial mimicry by mel-
anoma and sarcoma cells [135].
Tumor-suppressive effects of the ADAMTSs have

been linked to the deactivation of key proliferation or
survival signaling pathways, including suppression of Erk
signaling by ADAMTS8 [136], ADAMTS12 [137] and
ADAMTS15 [113], and of Akt/mTOR activity by
ADAMTS9 [138]. Recently, ADAMTS15 was shown to
inhibit breast cancer cell migration independently of its
catalytic activity by increasing cell surface syndecan-4
levels [96].

Frontiers
We are still short of understanding the functions of the
ADAMTS family in development and disease. This truth
is patent for the orphan enzymes for which substrates
have yet to be discovered. Even for those ADAMTS
(such as the aggrecanases) for which we have some
knowledge of (some of) their substrates and the import-
ance of their cleavage, it is likely that we will find new
specialized roles in particular tissue contexts linked to
the proteolysis of novel targets. There is a need, there-
fore, to apply proteomics technologies to unravel the
ADAMTS substrate degradomes, working at the levels
of both cells and intact tissues [139]. Building on this
base, the identification of extracellular bioactive frag-
ments that are generated by ADAMTSs’ action and
investigation of the functions of these fragments will be
priorities, along with determining the ways in which
cofactors such as the fibulins [104, 140] influence bind-
ing and cleavage preferences.
Gene knockout mice have determined the develop-

mental roles of certain ADAMTS family members,
though coverage is incomplete [4]. The early lethality in
Adamts9−/− mice indicates an essential developmental
function for ADAMTS9 but restricts investigations to
the study of heterozygous animals. Now a new condi-
tional Adamts9 model has been generated and a limb-
specific knockout has confirmed an essential role for
ADAMTS9 in interdigital web regression [141]. The
generation of conditional knockout strains for other
Adamts genes to chart their involvement in morpho-
genesis and disease will be essential.
At the protein level, there are many gaps in our know-

ledge of ADAMTS structure. In particular, we need to
know how features within the pro- and ancillary domains
of these enzymes conspire with the distinctive attributes
of the ADAMTS catalytic domains to control enzyme
localization, activation, trafficking, substrate binding,
cleavage, inhibition and turnover. This knowledge will
also prove useful in the design of novel therapeutics.
Active-site-directed inhibitors that are selective for
ADAMTSs over other metalloproteinases are a reality,
but it may be difficult to build in an ability to discrimin-
ate between ADAMTS family members. Thus, although
ADAMTS4 and ADAMTS5 inhibitors could be useful
anti-arthritics, they may have unwanted toxicities if they
also hit the pro-collagen-N-proteinases, for example.
We would also need to know whether such agents have
longer-term consequences, for instance in vascular function
and angiogenesis. There is, however, potential to build on
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knowledge of exosite interactions to develop novel inhibi-
tors that may block cleavage of specific substrates, while
leaving other catalytic actions of the targeted enzyme
unaltered.
Finally, an area that has not been covered extensively

in this review is the regulation of ADAMTS expression,
which is important for understanding disease patho-
genesis. There is also the possibility of prevention of
disease, potentially through dietary consumption of
protective phytochemicals that down-tune ADAMTS ex-
pression [142, 143]. At the post-transcriptional level, our
understanding of the functions of small RNAs as master
regulators of gene systems that include the ADAMTSs
is now advancing rapidly. Finally, given the roles of
ADAMTSs in human diseases, it is likely that genetic
polymorphisms that affect either their transcriptional or
post-transcriptional control will be revealed.
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